#include <iostream>
#include <cstdio>
#include <climits>
#include <cmath>
#include <cstring>
#include <string>
#include <array>
#include <vector>
#include <stack>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <bitset>
#include <numeric>
#include <algorithm>
#include <functional>
using namespace std;
#define ll long long
#define vi vector<int>
#define ssz(x) (int)((x).size())
#define sorta(v) sort(v.begin(), v.end())
#define sortd(v) sort(v.rbegin(), v.rend())
#define rep(i, n) for (int i = 0; i < n; i++)
#define repa(i, a, n) for (int i = a; i < n; i++)
#define repd(i, a, n) for (int i = a; i > n; i--)
#define endl '\n'
template <class T> void in(vector<T>& a) { rep(i, ssz(a)) cin >> a[i]; }
template <class T> void out(const vector<T>& a) { rep(i, ssz(a)) cout << a[i] << " \n"[i + 1 == ssz(a)]; }
const int MOD = 1e9 + 7;
const int N = 100;
struct Matrix {
long long a[N + 3][N + 3];
Matrix() { memset(a, 0, sizeof(a)); }
Matrix operator*(const Matrix& b) const {
Matrix res;
for (int i = 1; i <= N; ++i)
for (int j = 1; j <= N; ++j)
for (int k = 1; k <= N; ++k)
res.a[i][j] = (res.a[i][j] + a[i][k] * b.a[k][j]) % MOD;
return res;
}
} ans, base;
// this is an example of f[n] = f[n - 1] + f[n - 2] (Fibonacci dp)
// answer f[n] = ans.a[1][1]
void init() {
base.a[1][1] = base.a[1][2] = base.a[2][1] = 1;
ans.a[1][1] = ans.a[1][2] = 1;
}
// n is count of matrix multiplications
void qpow(long long n) {
while (n) {
if (n & 1) ans = ans * base;
base = base * base;
n >>= 1;
}
}
// this is an example of f[n] = f[n - 1] + f[n - m]
// answer f[n] = sum(ans.a[1][i])
void init(int m) {
base.a[1][1] = base.a[m][1] = 1;
ans.a[1][1] = ans.a[m][1] = 1;
for (int i = 2; i <= m; i++) {
base.a[i - 1][i] = 1;
ans.a[i - 1][i] = 1;
}
}
// i k j could be faster than i j k
Matrix mmul(int m, const Matrix& a, const Matrix& b) {
Matrix res;
for (int i = 1; i <= m; ++i) {
for (int k = 1; k <= m; ++k) {
for (int j = 1; j <= m; ++j) {
res.a[i][j] = (res.a[i][j] + a.a[i][k] * b.a[k][j]) % MOD;
}
}
}
return res;
}
// n is count of matrix multiplications, m is size of matrix
void mpow(int m, long long n) {
while (n) {
if (n & 1) ans = mmul(m, ans, base);
base = mmul(m, base, base);
n >>= 1;
}
}
void solve() {
ll n, m; cin >> n >> m;
if (n < m) {
cout << 1 << endl;
return;
}
init(m);
mpow(m, n - m);
ll tot = 0;
repa(i, 1, m + 1) {
tot += ans.a[1][i];
tot %= MOD;
}
cout << tot << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t = 1;
// cin >> t;
while (t--) solve();
}
150. Evaluate Reverse Polish Notation | 144. Binary Tree Preorder Traversal |
137. Single Number II | 130. Surrounded Regions |
129. Sum Root to Leaf Numbers | 120. Triangle |
102. Binary Tree Level Order Traversal | 96. Unique Binary Search Trees |
75. Sort Colors | 74. Search a 2D Matrix |
71. Simplify Path | 62. Unique Paths |
50. Pow(x, n) | 43. Multiply Strings |
34. Find First and Last Position of Element in Sorted Array | 33. Search in Rotated Sorted Array |
17. Letter Combinations of a Phone Number | 5. Longest Palindromic Substring |
3. Longest Substring Without Repeating Characters | 1312. Minimum Insertion Steps to Make a String Palindrome |
1092. Shortest Common Supersequence | 1044. Longest Duplicate Substring |
1032. Stream of Characters | 987. Vertical Order Traversal of a Binary Tree |
952. Largest Component Size by Common Factor | 212. Word Search II |
174. Dungeon Game | 127. Word Ladder |
123. Best Time to Buy and Sell Stock III | 85. Maximal Rectangle |