binary search combinatorics data structures dp implementation sortings *1400

Please click on ads to support us..

C++ Code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<sstream>
#include<set>
#include<map>
#include<unordered_map>
#include<queue>
#include<bitset>
#include<vector>
#include<iomanip>
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define FOR(I, A, B) for (int I = (A); I < (B); ++I)
#define SORT_UNIQUE(c) (sort(c.begin(),c.end()), c.resize(distance(c.begin(),unique(c.begin(),c.end()))))
#define GET_POS(c,x) (lower_bound(c.begin(),c.end(),x)-c.begin())
#define CASET int ___T; cin >> ___T; for(int cs=1;cs<=___T;cs++)
#define MP make_pair
#define PB push_back
#define LEN(X) strlen(X)
#define F first
#define S second
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef long double LD;
typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<LL> VL;
typedef vector<PII> VPII;
typedef pair<LL,LL> PLL;
typedef vector<PLL> VPLL;
template<class T> void _R(T &x) { cin >> x; }
template<class T,class U> void _R(pair<T,U> &x) {cin >> x.F >> x.S;}
void R() {}
template<class T, class... U> void R(T &head, U &... tail) {_R(head); R(tail...);}
template<class T> void _W(const T &x) {cout << x;}
void _W(const double &x) {cout << fixed << setprecision(16) << x;}
template<class T,class U> void _W(const pair<T,U> &x) {_W(x.F); cout << ' '; _W(x.S);}
template<class T> void _W(const vector<T> &x) { for (auto i = x.begin(); i != x.end(); _W(*i++)) if (i != x.cbegin()) cout << ' '; }
void W() {}
template<class T, class... U> void W(const T &head, const U &... tail) { _W(head); cout << (sizeof...(tail) ? ' ' : '\n'); W(tail...); }
#ifdef HOME
 #define DEBUG(...) {cout << "[DEBUG] "; W(__VA_ARGS__);}
#else
 #define DEBUG(...)
#endif
int MOD = 1e9+7;
int n;
vector<PII> A;

void input() {
	R(n);
	for (int i=0; i<n; ++i) {
		int m; R(m);
		vector<int> v(m);
		for(int j=0; j<m; j++) R(v[j]);
		reverse(ALL(v));
		if(is_sorted(ALL(v))){
			A.emplace_back(v[0], v.back());
		}
	}
}

void solve() {
	LL ans = 1LL*n*n;
	sort(ALL(A));
	for(int i=0; i<SZ(A); i++){
		ans -= A.end() - lower_bound(A.begin(), A.end(), pair<int,int>(A[i].second, -1));
	}
	W(ans);
}


int main(){ cin.tie(0); cout.tie(0); ios_base::sync_with_stdio(false);
    // CASET {
        input();
        solve();
    // }
    return 0;
}


Comments

Submit
0 Comments
More Questions

1302. Deepest Leaves Sum
1209. Remove All Adjacent Duplicates in String II
994. Rotting Oranges
983. Minimum Cost For Tickets
973. K Closest Points to Origin
969. Pancake Sorting
967. Numbers With Same Consecutive Differences
957. Prison Cells After N Days
946. Validate Stack Sequences
921. Minimum Add to Make Parentheses Valid
881. Boats to Save People
497. Random Point in Non-overlapping Rectangles
528. Random Pick with Weight
470. Implement Rand10() Using Rand7()
866. Prime Palindrome
1516A - Tit for Tat
622. Design Circular Queue
814. Binary Tree Pruning
791. Custom Sort String
787. Cheapest Flights Within K Stops
779. K-th Symbol in Grammar
701. Insert into a Binary Search Tree
429. N-ary Tree Level Order Traversal
739. Daily Temperatures
647. Palindromic Substrings
583. Delete Operation for Two Strings
518. Coin Change 2
516. Longest Palindromic Subsequence
468. Validate IP Address
450. Delete Node in a BST