1326B - Maximums - CodeForces Solution


implementation math *900

Please click on ads to support us..

Python Code:

input()
m=0
for x in map(int,input().split()):print(x+m);m+=max(0,x)

C++ Code:

 #include <bits/stdc++.h>
using namespace std;
// typedef
typedef long long ll;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vll;
typedef pair<int, int> pii;
typedef pair<long, long> pll;
typedef vector<pii> vpii;
typedef deque<int> di;
typedef deque<ll> dll;
// define instruction
#define double long double
#define rep(i, x, y) for (int i = x; i < y; i++)
#define ff first
#define ss second
#define pb push_back
#define pf push_front
#define all(x) begin(x), end(x)
// define constants
#define MOD 1000000007
#define inf 1e18
#define PI 3.141592653589793238462
// defined functions
ll setBitNumber(ll n)
{
	if (n == 0)
		return 0;
	ll msb = 0;
	n = n / 2;
	while (n != 0)
	{
		n = n / 2;
		msb++;
	}
	return (1 << msb);
}
ll countBits(ll number)
{ // log function in base  take only integer part
	return (ll)log2(number) + 1;
}
ll mul(ll a, ll b, ll mod = 1000000007)
{
	return ((a % mod) * (b % mod)) % mod;
}
ll gcd(ll a, ll b)
{
	if (b == 0)
	{
		return a;
	}
	return gcd(b, a % b);
}
bool isPrime(ll n)
{
	if (n <= 1)
		return false;
	if (n == 2 || n == 3)
		return true;
	if (n % 2 == 0 || n % 3 == 0)
		return false;

	for (ll i = 5; i <= sqrt(n); i = i + 6)
		if (n % i == 0 || n % (i + 2) == 0)
			return false;
	return true;
}
ll expo(ll a, ll b, ll mod)
{
	ll res = 1;
	while (b > 0)
	{
		if (b & 1)
			res = (res * a) % mod;
		a = (a * a) % mod;
		b = b >> 1;
	}
	return res;
}
int countDigit(ll n)
{
	return floor(log10(n) + 1);
}
ll lcm(ll a, ll b)
{
	return (a / gcd(a, b)) * b;
}
ll countDivisors(ll n)
{
	ll cnt = 0;
	for (ll i = 1; i <= sqrt(n); i++)
	{
		if (n % i == 0 && isPrime(i))
		{
			if (n / i == i)
				cnt++;
			else // Otherwise count both
				cnt = cnt + 2;
		}
	}
	return cnt;
}

int fact(int n);

int nCr(int n, int r)
{
	return fact(n) / (fact(r) * fact(n - r));
}

// Returns factorial of n
int fact(int n)
{
	if (n == 0)
		return 1;
	int res = 1;
	for (int i = 2; i <= n; i++)
		res = res * i;
	return res;
}
bool binarySearch(vector<ll> v, ll To_Find)
{
	ll lo = 0, hi = v.size() - 2;
	ll mid;
	// This below check covers all cases , so need to check
	// for mid=lo-(hi-lo)/2
	while (hi - lo > 1)
	{
		int mid = (hi + lo) / 2;
		if (v[mid] < To_Find)
		{
			lo = mid + 1;
		}
		else
		{
			hi = mid;
		}
	}
	if (v[lo] == To_Find)
	{
		return true;
	}
	else if (v[hi] == To_Find)
	{
		return true;
	}
	else
	{
		return false;
	}
}
unsigned long long power(unsigned long long x, unsigned long long y, unsigned long long p)
{
	unsigned long long res = 1; // Initialize result

	x = x % p; // Update x if it is more than or
	// equal to p

	while (y > 0)
	{

		// If y is odd, multiply x with result
		if (y & 1)
			res = (res * x) % p;

		// y must be even now
		y = y >> 1; // y = y/2
		x = (x * x) % p;
	}
	return res;
}

// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n, unsigned long long p)
{
	return power(n, p - 2, p);
}

// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n, unsigned long long r, unsigned long long p)
{
	// If n<r, then nCr should return 0
	if (n < r)
		return 0;
	// Base case
	if (r == 0)
		return 1;

	// Fill factorial array so that we
	// can find all factorial of r, n
	// and n-r
	unsigned long long fac[n + 1];
	fac[0] = 1;
	for (unsigned long long i = 1; i <= n; i++)
		fac[i] = (fac[i - 1] * i) % p;

	return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p;
}
// main solution
//@aniketrajput25
void solve()
{
	int n;
	cin >> n;
	vi arr(n);
	for (int i = 0; i < n; i++)
	{
		cin >> arr[i];
	}
	int maxi = INT_MIN;
	vi ans;
	ans.pb(arr[0]);
	maxi = max(maxi, arr[0]);
	for (int i = 1; i < n; i++)
	{
		ans.pb(maxi + arr[i]);
		maxi = max(maxi, arr[i]+maxi);
	}
	for (auto x : ans)
		cout << x << " ";
	return;
}
int main()
{
	ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	int t = 1;
	// cin >> t;
	while (t--)
	{
		solve();
	}

	return 0;
}
	  	  		   		 		  	      	 	 		


Comments

Submit
0 Comments
More Questions

13 Reasons Why
Friend's Relationship
Health of a person
Divisibility
A. Movement
Numbers in a matrix
Sequences
Split houses
Divisible
Three primes
Coprimes
Cost of balloons
One String No Trouble
Help Jarvis!
Lift queries
Goki and his breakup
Ali and Helping innocent people
Book of Potion making
Duration
Birthday Party
e-maze-in
Bricks Game
Char Sum
Two Strings
Anagrams
Prime Number
Lexical Sorting Reloaded
1514A - Perfectly Imperfect Array
580A- Kefa and First Steps
1472B- Fair Division