1504B - Flip the Bits - CodeForces Solution


constructive algorithms greedy implementation math *1200

Please click on ads to support us..

C++ Code:

///   ***   ---   |     In the name of ALLAH    |||   ---   ***   ///
/* Author: Asraful Islam Sabbir */
#include<bits/stdc++.h>
using namespace std;

#define optimize() ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define fraction(a) cout.unsetf(ios::floatfield); cout.precision(a); cout.setf(ios::fixed,ios::floatfield);
#define file() freopen("input.txt","r",stdin);freopen("output.txt","w",stdout);

#define    endl                                   '\n'
#define    ll                                       long long int
#define    pb                                     push_back
#define    ppb                                   pop_back
#define    pf                                      push_front
#define    ppf                                    pop_front
#define    mem1(a)                            memset(a,-1, sizeof(a))
#define    mem0(a)                            memset(a,0,sizeof(a))
#define    all(x)                                  sort( x.begin(), x.end())
#define    armin(v)                             *min_element(all(v))
#define    armax(v)                            *max_element(all(v))
#define    lb                                      lower_bound
#define    ub                                     upper_bound
#define    digits(n)                             floor (log10(n)) + 1
#define    binary_str_to_int_dec(s)       stoi(s,0,2)
#define    string_to_int(s)                    stoi(s)
#define    int_to_string(x)                    to_string(x)
#define    mod                                   1000000007
#define    ppc                                    __builtin_popcount     //count binary 1
#define    ppcll                                   __builtin_popcountll    //for long long
#define    fctz                                     __builtin_ctz        // count binary 0 from last to first
#define    pt(a,b)                                cout<<a<<" "<<b<<"\n";
#define    REP(i,a,b)                           for (int it = a; it <= b; it++)

const double PI = acos(-1);
const double eps = 1e-9;
const int inf = 2000000000;
const ll infLL = 9000000000000000000;

int dx[] = {0, 0, +1, -1};
int dy[] = {+1, -1, 0, 0};
//int dx[] = {+1, 0, -1, 0, +1, +1, -1, -1};
//int dy[] = {0, +1, 0, -1, +1, -1, +1, -1};

//debug
template<typename F,typename S>ostream&operator<<(ostream&os,const pair<F,S>&p){return os<<"("<<p.first<<", "<<p.second<<")";}
template<typename T>ostream&operator<<(ostream&os,const vector<T>&v){os<<"{";for(auto it=v.begin();it!=v.end();++it){if(it!=v.begin())os<<", ";os<<*it;}return os<<"}";}
template<typename T>ostream&operator<<(ostream&os,const set<T>&v){os<<"[";for(auto it=v.begin();it!=v.end();++it){if(it!=v.begin())os<<",";os<<*it;}return os<<"]";}
template<typename T>ostream&operator<<(ostream&os,const multiset<T>&v) {os<<"[";for(auto it=v.begin();it!=v.end();++it){if(it!=v.begin())os<<", ";os<<*it;}return os<<"]";}
template<typename F,typename S>ostream&operator<<(ostream&os,const map<F,S>&v){os<<"[";for(auto it=v.begin();it!=v.end();++it){if(it!=v.begin())os<<", ";os<<it->first<<" = "<<it->second;}return os<<"]";}
#define dbg(args...) do {cerr << #args << " : "; faltu(args); } while(0)
void faltu(){cerr << endl;}
template<typename T>void faltu(T a[],int n){for(int i=0;i<n;++i)cerr<<a[i]<<' ';cerr<<endl;}
template<typename T,typename...hello>void faltu(T arg,const hello&...rest){cerr<<arg<<' ';faltu(rest...);}
//#else
//#define dbg(args...)

/***********************************************************************************/
ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
ll lcm(ll a,ll b) { return (a/__gcd(a,b))*b;}
ll min(ll a,ll b,ll c) {return min(a,min(b,c));}
ll max(ll a,ll b,ll c) {return max(a,max(b,c));}
ll mod_number(ll a, ll b) {  return (a - b * (a / b)); }
ll mod_add(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a + b) % m) + m) % m;}
ll mod_mul(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a * b) % m) + m) % m;}
ll mod_sub(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a - b) % m) + m) % m;}
ll mod_pow(int a, int b, int m){ ll ans = 1;while(b){ ans *= a; b--;}return ans;}
ll mod_inverse(ll a, ll b){ return 1<a ? b - mod_inverse(b%a,a)*b/a : 1; }

/* Author: Sabbir */
/***********************************************************************************/
ll fact[1000000];
void factorial(){ fact[0]=fact[1]=1;  for(ll i=2;i<1000000;i++){  fact[i]=((i%mod)*(fact[i-1]%mod))%mod; }}

// x = array of numbers
// n = length of the array
// k = search key
// returns "true" if the key is found, "false" otherwise
int binarySearch(int x[], int n, int k) {  int l = 0, r = n-1;  while (l <= r) {  int m = (l+r)/2; if (x[m] == k) return 1; if (x[m] < k) l = m+1; else r = m-1; } return -1; }
ll bigmod(ll a, ll b, ll m){ if(b == 0) return 1 % m; ll x = bigmod(a, b/2, m); x = (x*x)%m; if(b%2 == 1) x = (x*a)%m; return x; }

/***********************************************************************************/
//for(auto &x : a){cin >> x;tots += x;}
//(condition) ? (variable = Expression2) : (variable = Expression3)
void solution(){
int n;
  cin>>n;
  string a,b;
  cin>>a>>b;
  int cnt_1 = 0;
  for (int i = 0; i < n; ++i)
  {
      //cout<<(a[i] == '1') - (a[i] == '0')<<endl;
    cnt_1 += (a[i] == '1') - (a[i] == '0');
    if(a[i] == b[i] != (a[i+1] == b[i+1]) && cnt_1!=0){
        cout<<"NO\n";
        return;
    }
  }

  cout<<"YES\n";

}
int main()
{
  optimize();  //fraction(a);
ll prueba;
  cin>>prueba;
  while(prueba--){
    solution();
  }
  return 0;
}
/***********************************************************************************/


Comments

Submit
0 Comments
More Questions

74. Search a 2D Matrix
71. Simplify Path
62. Unique Paths
50. Pow(x, n)
43. Multiply Strings
34. Find First and Last Position of Element in Sorted Array
33. Search in Rotated Sorted Array
17. Letter Combinations of a Phone Number
5. Longest Palindromic Substring
3. Longest Substring Without Repeating Characters
1312. Minimum Insertion Steps to Make a String Palindrome
1092. Shortest Common Supersequence
1044. Longest Duplicate Substring
1032. Stream of Characters
987. Vertical Order Traversal of a Binary Tree
952. Largest Component Size by Common Factor
212. Word Search II
174. Dungeon Game
127. Word Ladder
123. Best Time to Buy and Sell Stock III
85. Maximal Rectangle
84. Largest Rectangle in Histogram
60. Permutation Sequence
42. Trapping Rain Water
32. Longest Valid Parentheses
Cutting a material
Bubble Sort
Number of triangles
AND path in a binary tree
Factorial equations