// Exported by Exporter.exe
// Included from C.cpp
#include <bits/stdc++.h>
using namespace std;
#define PB push_back
#define F first
#define S second
#define MP make_pair
#define MTP make_tuple
#define R Read
#define RD Read_Digit
#define RP Read_P
#define RS Read_String
#define RL Read_Loop
#define RLD Read_Loop_Digit
#define RLP Read_Loop_P
#define RLS Read_Loop_String
#ifdef ONLINE_JUDGE
#define Debug(...) ;
#define Debug_Array(n,x) ;
#define Debugln_Array(n,x) ;
#define NL ;
#else
#define Debug(...) {printf("(%s) = ",(#__VA_ARGS__)),_print(__VA_ARGS__),printf("\n");}
#define Debug_Array(n,x) {printf("%s :",(#x));for(int i=1;i<=n;i++)printf(" "),_print(x[i]);printf("\n");}
#define Debugln_Array(n,x) {for(int i=1;i<=n;i++){printf("%s",(#x));printf("[%d] = ", i);_print(x[i]);printf("\n");}}
#define NL {printf("\n");}
#endif
typedef long long int ll;
typedef unsigned long long int ull;
constexpr int kN = int(1E5 + 10);
// constexpr int kMod = 998244353;
// constexpr int kMod = int(1E9 + 7);
// constexpr int kInf = 0x3f3f3f3f;
// constexpr ll kInf = 0x3f3f3f3f3f3f3f3f;
// constexpr double kPi = acos(-1);
// constexpr double kEps = 1E-9;
// constexpr int dx[4] = {0, 0, 1, -1};
// constexpr int dy[4] = {1, -1, 0, 0};
// constexpr int dx[8] = {0, 0, 1, -1, 1, -1, 1, -1};
// constexpr int dy[8] = {1, -1, 1, -1, -1, 1, 0, 0};
// Included from C:\Users\ianli\Desktop\CP\template\Various\Fast_IO\Fast_IO.cpp
bool Fast_IO_activated = false;
bool IOS_activated = false;
// --- Get ---
static inline char Get_Raw_Char() {
static bool pre = Fast_IO_activated = true;
static char buf[1 << 16], *p = buf, *end = buf;
if (p == end) {
if ((end = buf + fread(buf, 1, 1 << 16, stdin)) == buf) return '\0';
p = buf;
}
return *p++;
}
// --- Read ---
template <typename T> static inline void Read_P(T &n) {
static_assert(is_integral<T>::value, "Read_P requires an integral type");
char c;
while (!isdigit(c = Get_Raw_Char())) ;
n = int(c - '0');
while (isdigit(c = Get_Raw_Char())) n = n * 10 + int(c - '0');
return ;
}
template <typename T> static inline void Read(T &n) {
static_assert(is_integral<T>::value, "Read requires an integral type");
char c;
bool neg = false;
while (!isdigit(c = Get_Raw_Char())) if (c == '-') neg = true;
n = int(c - '0');
while (isdigit(c = Get_Raw_Char())) n = n * 10 + int(c - '0');
if (neg) n = -n;
return ;
}
template <typename T> static inline void Read_Digit(T &n) {
static_assert(is_integral<T>::value, "Read_Digit requires an integral type");
char c;
while (!isdigit(c = Get_Raw_Char())) ;
n = int(c - '0');
return ;
}
static inline void Read_String(string &s) {
char c = Get_Raw_Char();
while (c == ' ' || c == '\n') c = Get_Raw_Char();
while (c != ' ' && c != '\n') {
s += c;
c = Get_Raw_Char();
}
return ;
}
// --- Read multiple ---
template <typename T, typename... Targs> static inline void Read(T &n, Targs&... Fargs) {Read(n); return Read(Fargs...);}
template <typename T, typename... Targs> static inline void Read_Digit(T &n, Targs&... Fargs) {Read_Digit(n); return Read_Digit(Fargs...);}
template <typename T, typename... Targs> static inline void Read_P(T &n, Targs&... Fargs) {Read_P(n); return Read_P(Fargs...);}
template <typename... Targs> static inline void Read_String(string &s, Targs&... Fargs) {Read_String(s); return Read_String(Fargs...);}
// --- Read Loop ---
template <typename T> static inline void Read_Loop_i(int i, T *a) {return Read(a[i]);}
template <typename T, typename... Targs> static inline void Read_Loop_i(int i, T *a, Targs*... Fargs) {Read(a[i]); return Read_Loop_i(i, Fargs...);}
template <typename... Targs> static inline void Read_Loop(int n, Targs*... Fargs) {for (int i = 1; i <= n; i++) Read_Loop_i(i, Fargs...);}
template <typename T> static inline void Read_Loop_Digit_i(int i, T *a) {return Read_Digit(a[i]);}
template <typename T, typename... Targs> static inline void Read_Loop_Digit_i(int i, T *a, Targs*... Fargs) {Read_Digit(a[i]); return Read_Loop_Digit_i(i, Fargs...);}
template <typename... Targs> static inline void Read_Loop_Digit(int n, Targs*... Fargs) {for (int i = 1; i <= n; i++) Read_Loop_Digit_i(i, Fargs...);}
template <typename T> static inline void Read_Loop_P_i(int i, T *a) {return Read_P(a[i]);}
template <typename T, typename... Targs> static inline void Read_Loop_P_i(int i, T *a, Targs*... Fargs) {Read_P(a[i]); return Read_Loop_P_i(i, Fargs...);}
template <typename... Targs> static inline void Read_Loop_P(int n, Targs*... Fargs) {for (int i = 1; i <= n; i++) Read_Loop_P_i(i, Fargs...);}
static inline void Read_Loop_String_i(int i, string *a) {return Read_String(a[i]);}
template <typename... Targs> static inline void Read_Loop_String_i(int i, string *a, Targs*... Fargs) {Read_String(a[i]); return Read_Loop_String_i(i, Fargs...);}
template <typename... Targs> static inline void Read_Loop_String(int n, Targs*... Fargs) {for (int i = 1; i <= n; i++) Read_Loop_String_i(i, Fargs...);}
// --- Float ---
template <int mul, typename T> static inline void Read(T &n) {
char c;
bool neg = false;
while (!isdigit(c = Get_Raw_Char())) if (c == '-') neg = true;
n = int(c - '0');
while (isdigit(c = Get_Raw_Char())) n = n * 10 + int(c - '0');
int cnt = 0;
if (c == '.') {
while (isdigit(c = Get_Raw_Char())) {
n = n * 10 + int(c - '0');
cnt++;
}
}
while (cnt++ < mul) n = n * 10;
if (neg) n = -n;
return ;
}
template <int mul, typename T> static inline void Read_P(T &n) {
char c;
while (!isdigit(c = Get_Raw_Char())) ;
n = int(c - '0');
while (isdigit(c = Get_Raw_Char())) n = n * 10 + int(c - '0');
int cnt = 0;
if (c == '.') {
while (isdigit(c = Get_Raw_Char())) {
n = n * 10 + int(c - '0');
cnt++;
}
}
while (cnt++ < mul) n = n * 10;
return ;
}
template <int mul, typename T, typename... Targs> static inline void Read(T &n, Targs&... Fargs) {Read<mul>(n); return Read<mul>(Fargs...);}
template <int mul, typename T, typename... Targs> static inline void Read_P(T &n, Targs&... Fargs) {Read_P<mul>(n); return Read_P<mul>(Fargs...);}
// --- init ---
inline void IOS() {
IOS_activated = true;
ios::sync_with_stdio(false); cin.tie(0);
}
inline void Freopen(const char *in, const char *out) {freopen(in, "r", stdin); freopen(out, "w", stdout); return ;}
// --- Output ---
template <typename T> void Print(T x) {
if (x < 0) {
printf("-");
x = -x;
}
if (x == 0) printf("0");
else {
static int val[100];
int idx = -1;
while (x) {
val[++idx] = x % 10;
x /= 10;
}
while (idx >= 0) printf("%d", val[idx--]);
}
}
// End of C:\Users\ianli\Desktop\CP\template\Various\Fast_IO\Fast_IO.cpp
// Included from C:\Users\ianli\Desktop\CP\template\Various\Useful_Functions\Useful_Functions.cpp
template <typename T> inline void sort(vector<T> &v) {return sort(v.begin(), v.end());}
template <typename T> inline void sort_r(vector<T> &v) {return sort(v.begin(), v.end(), greater<T>());}
inline void sort(string &s) {return sort(s.begin(), s.end());}
inline void sort_r(string &s) {return sort(s.begin(), s.end(), greater<char>());}
template <typename T> inline void reverse(vector<T> &v) {return reverse(v.begin(), v.end());}
inline void reverse(string &s) {return reverse(s.begin(), s.end());}
template <typename T> inline void Merge(vector<T> &a, vector<T> &b, vector<T> &c) {
if (c.size() < a.size() + b.size()) c.resize(a.size() + b.size());
merge(a.begin(), a.end(), b.begin(), b.end(), c.begin());
return ;
}
template <typename T> inline void Concatanate(vector<T> &a, vector<T> &b, vector<T> &c) {
int a_size = int(a.size()), b_size = int(b.size());
c.resize(a_size + b_size);
for (int i = 0; i < a_size; i++) c[i] = a[i];
for (int i = 0; i < b_size; i++) c[i + a_size] = b[i];
return ;
}
template <typename T> inline void Discrete(vector<T> &v) {sort(v); v.resize(unique(v.begin(), v.end()) - v.begin()); return ;}
template <typename T> inline int Discrete_Id(vector<T> &v, T x) {return lower_bound(v.begin(), v.end(), x) - v.begin();}
template <typename T> using PQ = priority_queue<T>;
template <typename T> using PQ_R = priority_queue<T, vector<T>, greater<T>>;
template <typename T> inline T ABS(T n) {return n >= 0 ? n : -n;}
template <typename T> __attribute__((target("bmi"))) inline T gcd(T a, T b) {
if (a < 0) a = -a;
if (b < 0) b = -b;
if (a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a);
int m = __builtin_ctzll(b);
a >>= n;
b >>= m;
while (a != b) {
int m = __builtin_ctzll(a - b);
bool f = a > b;
T c = f ? a : b;
b = f ? b : a;
a = (c - b) >> m;
}
return a << min(n, m);
}
template <typename T> inline T lcm(T a, T b) {return a * (b / gcd(a, b));}
template <typename T, typename... Targs> inline T gcd(T a, T b, T c, Targs... args) {return gcd(a, gcd(b, c, args...));}
template <typename T, typename... Targs> inline T lcm(T a, T b, T c, Targs... args) {return lcm(a, lcm(b, c, args...));}
template <typename T, typename... Targs> inline T min(T a, T b, T c, Targs... args) {return min(a, min(b, c, args...));}
template <typename T, typename... Targs> inline T max(T a, T b, T c, Targs... args) {return max(a, max(b, c, args...));}
template <typename T, typename... Targs> inline void chmin(T &a, T b, Targs... args) {a = min(a, b, args...); return ;}
template <typename T, typename... Targs> inline void chmax(T &a, T b, Targs... args) {a = max(a, b, args...); return ;}
vector<int> Primes(int n) {
if (n == 1) return {};
// 2 ~ n
vector<int> primes;
vector<bool> isPrime(n + 1, true);
primes.reserve(n / __lg(n));
for (int i = 2; i <= n; i++) {
if (isPrime[i]) primes.push_back(i);
for (int j : primes) {
if (i * j > n) break;
isPrime[i * j] = false;
if (i % j == 0) break;
}
}
return primes;
}
template <typename T> vector<T> factors(T x) {
// maybe use factorize would be faster?
vector<T> ans;
for (T i = 1; i * i <= x; i++) if (x % i == 0) ans.push_back(i);
int id = int(ans.size()) - 1;
if (ans[id] * ans[id] == x) id--;
for (int i = id; i >= 0; i--) ans.push_back(x / ans[i]);
return ans;
}
int mex(vector<int> vec) {
int n = int(vec.size());
vector<bool> have(n, false);
for (int i : vec) if (i < n) have[i] = true;
for (int i = 0; i < n; i++) if (!have[i]) return i;
return n;
}
template <typename T> T SQ(T x) {return x * x;}
template <typename T> T Mdist(pair<T, T> lhs, pair<T, T> rhs) {return ABS(lhs.first - rhs.first) + ABS(lhs.second - rhs.second);}
template <typename T> T Dist2(pair<T, T> lhs, pair<T, T> rhs) {
return SQ(lhs.F - rhs.F) + SQ(lhs.S - rhs.S);
}
template <typename T> T LUBound(T LB, T val, T UB) {return min(max(LB, val), UB);}
template <typename T, typename Comp> T Binary_Search(T L, T R, Comp f) {
// L good R bad
static_assert(is_integral<T>::value, "Binary_Search requires an integral type");
while (R - L > 1) {
T mid = (L + R) >> 1;
if (f(mid)) L = mid;
else R = mid;
}
return L;
}
template <typename Comp> double Binary_Search(double L, double R, Comp f, int n = 30) {
for (int i = 1; i <= n; i++) {
double mid = (L + R) / 2;
if (f(mid)) L = mid;
else R = mid;
}
return L;
}
template <typename T> T nearest(set<T> &se, T val) {
static constexpr T kInf = numeric_limits<T>::max() / 2 - 10;
if (se.empty()) return kInf;
else if (val <= *se.begin()) return *se.begin() - val;
else if (val >= *prev(se.end())) return val - *prev(se.end());
else {
auto u = se.lower_bound(val);
auto v = prev(u);
return min(*u - val, val - *v);
}
}
namespace MR32 {
using ull = unsigned long long int;
using uint = unsigned int;
ull PowMod(ull a, ull b, ull kMod) {
ull ans = 1;
for (; b; b >>= 1, a = a * a % kMod) if (b & 1) ans = ans * a % kMod;
return ans;
}
bool IsPrime(uint x) {
static constexpr bool low[8] = {false, false, true, true, false, true, false, true};
static constexpr uint as = 3, a[3] = {2, 7, 61};
if (x < 8) return low[x];
uint t = x - 1;
int r = 0;
while ((t & 1) == 0) {
t >>= 1;
r++;
}
for (uint i = 0; i < as; i++) if (a[i] <= x - 2) {
bool ok = false;
ull tt = PowMod(a[i], t, x);
if (tt == 1) continue;
for (int j = 0; j < r; j++, tt = tt * tt % x) if (tt == x - 1) {
ok = true;
break;
}
if (!ok) return false;
}
return true;
}
}
#ifdef __SIZEOF_INT128__
namespace MR64 {
using uint128 = unsigned __int128;
using ull = unsigned long long int;
using uint = unsigned int;
uint128 PowMod(uint128 a, uint128 b, uint128 kMod) {
uint128 ans = 1;
for (; b; b >>= 1, a = a * a % kMod) if (b & 1) ans = ans * a % kMod;
return ans;
}
bool IsPrime(ull x) {
static constexpr bool low[8] = {false, false, true, true, false, true, false, true};
static constexpr uint as = 7, a[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
if (x < 8) return low[x];
ull t = x - 1;
int r = 0;
while ((t & 1) == 0) {
t >>= 1;
r++;
}
for (uint i = 0; i < as; i++) if (a[i] <= x - 2) {
bool ok = false;
uint128 tt = PowMod(a[i], t, x);
if (tt == 1) continue;
for (int j = 0; j < r; j++, tt = tt * tt % x) if (tt == x - 1) {
ok = true;
break;
}
if (!ok) return false;
}
return true;
}
}
#endif
bool IsPrime(unsigned long long int x) {
#ifdef __SIZEOF_INT128__
if ((x >> 32) == 0) return MR32::IsPrime(x);
else return MR64::IsPrime(x);
#endif
return MR32::IsPrime(x);
}
#ifdef __SIZEOF_INT128__
uint64_t PollardRho(uint64_t x) {
static mt19937 rng;
if (!(x & 1)) return 2;
if (IsPrime(x)) return x;
int64_t a = rng() % (x - 2) + 2, b = a;
uint64_t c = rng() % (x - 1) + 1, d = 1;
while (d == 1) {
a = (__int128(a) * a + c) % x;
b = (__int128(b) * b + c) % x;
b = (__int128(b) * b + c) % x;
d = __gcd(uint64_t(abs(a - b)), x);
if (d == x) return PollardRho(x);
}
return d;
}
#endif
template <typename T> vector<T> factorize(T x) {
if (x <= 1) return {};
T p = PollardRho(x);
if (p == x) return {x};
vector<T> ans, lhs = factorize(p), rhs = factorize(x / p);
Merge(lhs, rhs, ans);
return ans;
}
template <typename T> vector<pair<T, int>> Compress(vector<T> vec) {
// vec must me sorted
if (vec.empty()) return {};
vector<pair<T, int>> ans;
int cnt = 1, sz = int(vec.size());
T lst = vec[0];
for (int i = 1; i < sz; i++) {
if (lst != vec[i]) {
ans.push_back(make_pair(lst, cnt));
lst = vec[i];
cnt = 1;
}
else cnt++;
}
ans.push_back(make_pair(lst, cnt));
return ans;
}
// End of C:\Users\ianli\Desktop\CP\template\Various\Useful_Functions\Useful_Functions.cpp
// Included from C:\Users\ianli\Desktop\CP\template\Various\Debug\Debug.cpp
template <typename T> void _print(vector<T> v) ;
void _print(bool x) {printf("%d", x ? 1 : 0);}
void _print(char x) {printf("%c", x);}
void _print(short x) {printf("%hd", x);}
void _print(unsigned short x) {printf("%hu", x);}
void _print(int x) {printf("%d", x);}
void _print(unsigned int x) {printf("%u", x);}
void _print(long long int x) {printf("%lld", x);}
void _print(unsigned long long int x) {printf("%llu", x);}
void _print(float x) {printf("%f", x);}
void _print(double x) {printf("%lf", x);}
void _print(long double x) {printf("%Lf", x);}
template <size_t _size> void _print(bitset<_size> bs) {for (int i = 0; i < _size; i++) printf("%d", bs[i] ? 1 : 0);}
#ifdef __SIZEOF_INT128__
void _print(__int128 x) {
if (x < 0) {
printf("-");
x = -x;
}
if (x == 0) printf("0");
else {
static int val[100];
int idx = -1;
while (x) {
val[++idx] = x % 10;
x /= 10;
}
while (idx >= 0) printf("%d", val[idx--]);
}
}
void _print(unsigned __int128 x) {
if (x < 0) {
printf("-");
x = -x;
}
if (x == 0) printf("0");
else {
static int val[100];
int idx = -1;
while (x) {
val[++idx] = x % 10;
x /= 10;
}
while (idx >= 0) printf("%d", val[idx--]);
}
}
#endif
template <typename T1, typename T2> void _print(pair<T1, T2> x) {printf("("); _print(x.first); printf(", "); _print(x.second); printf(")");}
template <typename T1, typename T2, typename T3> void _print(tuple<T1, T2, T3> x) {printf("("); _print(get<0>(x)); printf(", "); _print(get<1>(x)); printf(", "); _print(get<2>(x)); printf(")");}
template <typename T> void _print(vector<T> v) {
if (v.empty()) printf(" empty");
else {
bool first = true;
for (T i : v) {
if (first) first = false;
else printf(", ");
_print(i);
}
}
}
template <typename T> void _print(set<T> s) {
if (s.empty()) printf(" empty");
else {
bool first = true;
for (T i : s) {
if (first) first = false;
else printf(", ");
_print(i);
}
}
}
template <typename T> void _print(stack<T> s) {
if (s.empty()) printf(" empty");
else {
_print(s.top()); s.pop();
while (!s.empty()) {printf(", "); _print(s.top()); s.pop();}
}
}
template <typename T> void _print(queue<T> q) {
if (q.empty()) printf(" empty");
else {
_print(q.front()); q.pop();
while (!q.empty()) {printf(", "); _print(q.front()); q.pop();}
}
}
template <typename T> void _print(deque<T> dq) {
if (dq.empty()) printf(" empty");
else {
_print(dq.front()); dq.pop_front();
while (!dq.empty()) {printf(", "); _print(dq.front()); dq.pop_front();}
}
}
template <typename T1, typename T2, typename T3> void _print(priority_queue<T1, T2, T3> pq) {
if (pq.empty()) printf(" empty");
else {
_print(pq.top()); pq.pop();
while (!pq.empty()) {printf(", "); _print(pq.top()); pq.pop();}
}
}
template <typename T1, typename T2> void _print(map<T1, T2> m) {
if (m.empty()) printf(" empty");
else {
bool first = true;
for (pair<T1, T2> i : m) {
if (first) first = false;
else printf(", ");
_print(i);
}
}
}
template <typename T> void _print(T x) {return x.out();}
template <typename T, typename... Targs> void _print(T x, Targs... Fargs) {_print(x); printf(", "); _print(Fargs...);}
// End of C:\Users\ianli\Desktop\CP\template\Various\Debug\Debug.cpp
int a[kN], b[kN];
void solve() {
int n; RP(n);
RLP(n, a);
RLP(n, b);
int tota = 0, totb = 0;
PQ_R<int> pqa, pqb;
PQ<int> popedb;
int r = n % 4;
for (int i = 1; i <= n; i++) {
pqa.push(a[i]);
tota += a[i];
pqb.push(b[i]);
totb += b[i];
}
for (int i = 4; i <= n; i += 4) {
tota -= pqa.top();
pqa.pop();
totb -= pqb.top();
popedb.push(pqb.top());
pqb.pop();
}
int ans = 0;
while (tota < totb) {
ans++;
r++;
pqa.push(100);
tota += 100;
if (!popedb.empty()) {
totb += popedb.top();
pqb.push(popedb.top());
popedb.pop();
}
else {
pqb.push(0);
totb += 0;
}
if (r == 4) {
r = 0;
tota -= pqa.top();
pqa.pop();
if (pqb.top()) {
popedb.push(pqb.top());
totb -= pqb.top();
}
pqb.pop();
}
}
printf("%d\n", ans);
return ;
}
int main() {
int t; RP(t);
for (int i = 1; i <= t; i++) {
solve();
}
}
// End of C.cpp
322. Coin Change | 307. Range Sum Query - Mutable |
287. Find the Duplicate Number | 279. Perfect Squares |
275. H-Index II | 274. H-Index |
260. Single Number III | 240. Search a 2D Matrix II |
238. Product of Array Except Self | 229. Majority Element II |
222. Count Complete Tree Nodes | 215. Kth Largest Element in an Array |
198. House Robber | 153. Find Minimum in Rotated Sorted Array |
150. Evaluate Reverse Polish Notation | 144. Binary Tree Preorder Traversal |
137. Single Number II | 130. Surrounded Regions |
129. Sum Root to Leaf Numbers | 120. Triangle |
102. Binary Tree Level Order Traversal | 96. Unique Binary Search Trees |
75. Sort Colors | 74. Search a 2D Matrix |
71. Simplify Path | 62. Unique Paths |
50. Pow(x, n) | 43. Multiply Strings |
34. Find First and Last Position of Element in Sorted Array | 33. Search in Rotated Sorted Array |