testcases = int(input())
numbers = []
for i in range(testcases):
n = int(input())
numbers.append(list(map(int,input().split())))
def checkSequence(num):
l = 0
r = len(num) - 1
redCount = 0
redSum = 0
blueCount = 0
blueSum = 0
while l <= r:
if redCount < blueCount and redSum > blueSum:
return 'YES'
if redSum <= blueSum:
redSum += num[r]
redCount += 1
r -= 1
elif blueCount <= redCount:
blueSum += num[l]
blueCount += 1
l += 1
if redCount < blueCount and redSum > blueSum:
return 'YES'
return 'NO'
for num in numbers:
num.sort()
print(checkSequence(num))
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long t,n;
cin>>t;
while(t--){
cin>>n;
long long arr[n];
for(long long i=0;i<n;i++){
cin>>arr[i];
}
sort(arr,arr+n);
// reverse(arr,arr+n);
if(n%2==0){
long long l=(n/2-1);
long long sum=arr[0]; long long cnt = 0;
int c=0;
for(int i=0;i<(l);i++){
sum=sum+arr[i+1];
cnt=cnt+arr[(n-1)-i];
// cout<<cnt<<" "<<sum<<endl;
if(cnt>sum){
cout<<"YES"<<endl;
c=1;
break;
}
}
if(c==0){
cout<<"NO"<<endl;
}
}else
{
long long l=(n/2);
long long sum=arr[0]; long long cnt = 0;
int c=0;
for(int i=0;i<(l);i++){
sum=sum+arr[i+1];
cnt=cnt+arr[(n-1)-i];
// cout<<cnt<<" "<<sum<<endl;
if(cnt>sum){
cout<<"YES"<<endl;
c=1;
break;
}
}
if(c==0){
cout<<"NO"<<endl;
}
}
}
return 0;
}
1665B - Array Cloning Technique | 1665A - GCD vs LCM |
118D - Caesar's Legions | 1598A - Computer Game |
1605A - AM Deviation | 1461A - String Generation |
1585B - Array Eversion | 1661C - Water the Trees |
1459A - Red-Blue Shuffle | 1661B - Getting Zero |
1661A - Array Balancing | 1649B - Game of Ball Passing |
572A - Arrays | 1455A - Strange Functions |
1566B - MIN-MEX Cut | 678C - Joty and Chocolate |
1352E - Special Elements | 1520E - Arranging The Sheep |
1157E - Minimum Array | 1661D - Progressions Covering |
262A - Roma and Lucky Numbers | 1634B - Fortune Telling |
1358A - Park Lighting | 253C - Text Editor |
365B - The Fibonacci Segment | 75A - Life Without Zeros |
1519A - Red and Blue Beans | 466A - Cheap Travel |
659E - New Reform | 1385B - Restore the Permutation by Merger |