R=lambda:[*map(int,input().split())]
for _ in[0]*R()[0]:R();a=R();b=R();print(min(sum(min(abs(c[i]-d[i]),sum(min(abs(u[i]-z)for
z in v)for u,v in((c,d),(d,c))))for i in(0,-1))for
c,d in((a,b),(a,b[::-1]))))
#include <bits/stdc++.h>
using namespace std;
#define ull unsigned long long
#define ll long long
#define foru(i, a, b) for (int i = a; i <= b; ++i)
#define ford(i, a, b) for (int i = a; i >= b; --i)
#define endl '\n'
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define bit(x, k) (((x) >> (k)) & 1ll)
#define on(x, k) ((x) | (1ll << (k)))
#define off(x, k) ((x) & (~(1ll << (k))))
#define ms(x, y) memset(x, y, sizeof(x))
const ll mod = 1e9 + 7;
const ll base = 31;
const ll maxn = 2e5 + 5;
void solve()
{
int n;
cin >> n;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
for (int i = 0; i < n; i++)
{
cin >> b[i];
}
int dau1 = a.front(), cuoi1 = a.back();
// a.pop_back();
// reverse(all(a));
// a.pop_back();
// reverse(all(a));
int dau2 = b.front(), cuoi2 = b.back();
// b.pop_back();
// reverse(all(b));
// b.pop_back();
// reverse(all(b));
sort(all(a));
sort(all(b));
map<ll, ll> opt;
auto it = lower_bound(all(b), dau1);
if (it == b.end())
--it;
if (it == b.begin())
opt[dau1] = abs(*it - dau1);
else
opt[dau1] = min(abs(*it - dau1), abs(*(it - 1) - dau1));
it = lower_bound(all(b), cuoi1);
if (it == b.end())
--it;
if (it == b.begin())
opt[cuoi1] = abs(*it - cuoi1);
else
opt[cuoi1] = min(abs(*it - cuoi1), abs(*(it - 1) - cuoi1));
it = lower_bound(all(a), dau2);
if (it == a.end())
--it;
if (it == a.begin())
opt[dau2] = abs(*it - dau2);
else
opt[dau2] = min(abs(*it - dau2), abs(*(it - 1) - dau2));
it = lower_bound(all(a), cuoi2);
if (it == a.end())
--it;
if (it == a.begin())
opt[cuoi2] = abs(*it - cuoi2);
else
opt[cuoi2] = min(abs(*it - cuoi2), abs(*(it - 1) - cuoi2));
ll res1 = min(abs(dau1 - dau2) + abs(cuoi1 - cuoi2), abs(dau1 - cuoi2) + abs(cuoi1 - dau2));
ll res2 = min({abs(dau1 - dau2) + opt[cuoi1] + opt[cuoi2], abs(dau1 - cuoi2) + opt[cuoi1] + opt[dau2], abs(cuoi1 - dau2) + opt[dau1] + opt[cuoi2], abs(cuoi1 - cuoi2) + opt[dau1] + opt[dau2]});
ll res3 = opt[dau1] + opt[cuoi1] + opt[dau2] + opt[cuoi2];
cout << min({res1, res2, res3}) << endl;
}
int main()
{
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
400B - Inna and New Matrix of Candies | 870B - Maximum of Maximums of Minimums |
1600E - Array Game | 1149A - Prefix Sum Primes |
277A - Learning Languages | 769A - Year of University Entrance |
1738A - Glory Addicts | 1738C - Even Number Addicts |
1064B - Equations of Mathematical Magic | 384A - Coder |
1738B - Prefix Sum Addicts | 1352D - Alice Bob and Candies |
1316D - Nash Matrix | 1548B - Integers Have Friends |
348A - Mafia | 315B - Sereja and Array |
204A - Little Elephant and Interval | 385B - Bear and Strings |
114C - Grammar Lessons | 1427A - Avoiding Zero |
583A - Asphalting Roads | 1358B - Maria Breaks the Self-isolation |
828A - Restaurant Tables | 1735A - Working Week |
1735D - Meta-set | 1735B - Tea with Tangerines |
1735C - Phase Shift | 1321C - Remove Adjacent |
281B - Nearest Fraction | 1043A - Elections |