1731E - Graph Cost - CodeForces Solution


dp greedy math number theory *2000

Please click on ads to support us..

Python Code:

import sys
readline=sys.stdin.readline
from collections import Counter

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factors=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factors[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factors[p]+=1
                if N<p*p:
                    if N!=1:
                        factors[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factors[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factors[N]+=1
        return factors

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            pow_p=[1]
            for _ in range(e):
                pow_p.append(pow_p[-1]*p)
            divisors=[i*j for i in divisors for j in pow_p]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

    def Mebius(self,N):
        fact=self.Factorize(N)
        for e in fact.values():
            if e>=2:
                return 0
        else:
            if len(fact)%2==0:
                return 1
            else:
                return -1

T=int(readline())
P=Prime(10**6)
for t in range(T):
    N,M=map(int,readline().split())
    cnt=[0]*(N+1)
    for g in range(1,N+1):
        cnt[g]=N//g*(N//g-1)//2
    for p in P.primes:
        if N<p:
            break
        for g in range(p,N+1,p):
            cnt[g//p]-=cnt[g]
    ans=0
    for g in range(N,1,-1):
        c=min(cnt[g],M)//(g-1)
        ans+=c*g
        M-=c*(g-1)
    if M:
        ans=-1
    print(ans)

C++ Code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

int main(){
  int TC, n;
  ll m;
  cin >> TC;
  while (TC--){
    scanf("%d%lld", &n, &m);
    ll dp[n+1], res=0;
    for (int d = n; d >= 2; d--){
      dp[d] = ((n/d)*1ll*((n/d)-1))/2;
      for (int k = 2; k <= n/d; k++) dp[d] -= dp[k*d];
    }
    for (ll d = n; d >= 2; d--){
      ll t = min(m/(d-1), dp[d]/(d-1));
      m-=(d-1)*t, res+=d*t;
    }
    if(m) printf("-1\n");
    else printf("%lld\n", res);
  }   
}


Comments

Submit
0 Comments
More Questions

1920. Build Array from Permutation
494. Target Sum
797. All Paths From Source to Target
1547B - Alphabetical Strings
1550A - Find The Array
118B - Present from Lena
27A - Next Test
785. Is Graph Bipartite
90. Subsets II
1560A - Dislike of Threes
36. Valid Sudoku
557. Reverse Words in a String III
566. Reshape the Matrix
167. Two Sum II - Input array is sorted
387. First Unique Character in a String
383. Ransom Note
242. Valid Anagram
141. Linked List Cycle
21. Merge Two Sorted Lists
203. Remove Linked List Elements
733. Flood Fill
206. Reverse Linked List
83. Remove Duplicates from Sorted List
116. Populating Next Right Pointers in Each Node
145. Binary Tree Postorder Traversal
94. Binary Tree Inorder Traversal
101. Symmetric Tree
77. Combinations
46. Permutations
226. Invert Binary Tree