//Partho Pratim Choudhury 2112003 (partho_03)
#include<iostream>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<string>
#include<climits>
#include<queue>
#include<stack>
// #include<ext/pb_ds/assoc_container.hpp>
// #include<ext/pb_ds/tree_policy.hpp>
#include<cstring>
#include<bitset>
#include<bits/stdc++.h>
#define int long long
#define ll long long
#define fr(i,k,n) for(ll i=k;i<n;i++)
#define rfr(i,n,k) for(ll i=n;i>=k;i--)
#define inp(vec,n) fr(i,0,n){cin >> vec[i];}
#define all(x) (x).begin(),(x).end()
#define vll vector<ll>
#define vpll vector<pair<ll, ll>>
#define mll map<ll,ll>
#define p_b push_back
#define br '\n'
#define print(a,n) for(int i=0;i<n;i++) cout<<a[i]<<" "; cout<<endl;
#define fbo(k) find_by_order(k) // returns an iterator to kth element in ordered set (zero based index)
#define ook(k) order_of_key(k) // counts the elements which are strictly less than key k in ordered set
#define max_pq priority_queue<ll>
#define min_pq priority_queue<ll, vll, greater<ll>>
using namespace std;
// using namespace __gnu_pbds;
// template<typename T>
// using ordered_set=tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; //required to perform set operations with indexing facility
// void google(i){
// cout << "Case #" << i << ": ";
// }
/**************************************Number theory starts********************************************/
const int M=1e9+7;
//1. Binary exponentiation (log p)
ll power(ll b, ll p){ll res=1; while(p!=0){ if(p&1){ res=res*b; p--;} else{ b=b*b; p=p/2;}} return res;}
//2. Fermats little theorem (log m) provided m is prime and b and m are relatively prime
ll modPow(ll b, ll p, ll m){ll res=1; while(p!=0){ if(p&1){ res=(res*b)%m; p--;} else{ b=(b*b)%m; p=p/2;}} return res;}
ll phi(ll n){ ll res=n; for(ll i=2;i*i<=n;i++){ if(n%i==0){ res=res/i; res=res*(i-1);} while(n%i==0){ n=n/i;}} if(n>1){ res=res/n; res=res*(n-1); } return res;}
ll mod(ll x){ return ((x%M + M)%M);}
ll add(ll a, ll b){ return mod(mod(a)+mod(b));}
ll mul(ll a, ll b){ return mod(mod(a)*mod(b));}
ll inv(ll x){ return modPow(x,M-2,M);}
ll divide(ll a, ll b){ return mul(a,inv(b));}
ll lcm(ll a, ll b){return (a / __gcd(a, b)) * b;}
// ll nCr(ll n, ll r){ return divide(fact[n],mul(fact[r],fact[n-r]));}
/****************************************Number theory ends**********************************************/
/***********************************Disjoint Set Union Starts********************************************/
// class DisjointSet{
// vector<int> rank, parent, size;
// public:
// DisjointSet(int n){
// rank.resize(n+1, 0);
// parent.resize(n+1);
// size.resize(n+1,1);
// for(int i = 0; i <= n; i++){
// parent[i] = i;
// }
// }
// int findUPar(int node){
// if(node == parent[node]){
// return node;
// }
// return parent[node] = findUPar(parent[node]);
// }
// void unionByRank(int u, int vec){
// int ul_pu = findUPar(u);
// int ul_pv = findUPar(vec);
// if(ul_pu == ul_pv) return;
// if(rank[ul_pu] < rank[ul_pv]){
// parent[ul_pu] = ul_pv;
// }
// else if(rank[ul_pv] < rank[ul_pu]){
// parent[ul_pv] = ul_pu;
// }else{
// parent[ul_pv] = ul_pu;
// rank[ul_pu]++;
// }
// }
// void unionBySize(int u, int vec){
// int ul_pu = findUPar(u);
// int ul_pv = findUPar(vec);
// if(ul_pu == ul_pv) return;
// if(size[ul_pu] < size[ul_pv]){
// parent[ul_pu] = ul_pv;
// size[ul_pv] += size[ul_pu];
// }else{
// parent[ul_pv] = ul_pu;
// size[ul_pu] += size[ul_pv];
// }
// }
// };
/************************************Disjoint Set Union Ends*********************************************/
void solve(){
// cout << "hello" << endl;
int n, m, d;
cin >> n >> m >> d;
vll vec(m);
fr(i,0,m){
cin >> vec[i];
}
vll prefix(m, 0);
vll suffix(m, 0);
rfr(i, m-1, 0){
if (i == m-1){
if (vec[i] == n){
suffix[i] = 1;
}else{
suffix[i] = 1 + (n - vec[i]) / d;
}
}else{
suffix[i] = suffix[i+1] + (vec[i+1] - vec[i]) / d;
if ((vec[i + 1] - vec[i]) % d){
suffix[i]++;
}
}
}
fr(i, 0, m){
if (i == 0){
if (vec[i] == 1){
prefix[i] = 1;
}else{
prefix[i] = 1 + (vec[i] - 1) / d;
if ((vec[i] - 1) % d){
prefix[i]++;
}
}
}else{
prefix[i] = prefix[i-1] + (vec[i] - vec[i-1]) / d;
if ((vec[i] - vec[i-1]) % d){
prefix[i]++;
}
}
}
map<int, int> mp;
for (int i = 0; i < m; i++){
int ans;
if (i == 0){
ans = 1 + suffix[i+1] + ((vec[i+1] - 1) / d);
if ((vec[i+1] - 1) % d == 0){
ans--;
}
mp[ans]++;
}
else if (i == m - 1){
ans = prefix[i-1] + ((n - vec[i-1]) / d);
mp[ans]++;
}else{
ans = prefix[i-1] + suffix[i+1] + ((vec[i+1] - vec[i-1]) / d);
if ((vec[i+1] - vec[i-1]) % d == 0){
ans--;
}
mp[ans]++;
}
}
cout << mp.begin()->first << " " << mp.begin()->second << endl;
return;
}
int32_t main(){
ios::sync_with_stdio(0);
cin.tie(0);
#ifndef ONLINE_JUDGE
freopen("input.txt","r+",stdin);
freopen("output.txt","w+",stdout);
#endif
ll t=1;
cin>>t;
for(ll i=1;i<=t;i++){
// google(i);
solve();
}
return 0;
}
1281C - Cut and Paste | 141A - Amusing Joke |
112A - Petya and Strings | 677A - Vanya and Fence |
1621A - Stable Arrangement of Rooks | 472A - Design Tutorial Learn from Math |
1368A - C+= | 450A - Jzzhu and Children |
546A - Soldier and Bananas | 32B - Borze |
1651B - Prove Him Wrong | 381A - Sereja and Dima |
41A - Translation | 1559A - Mocha and Math |
832A - Sasha and Sticks | 292B - Network Topology |
1339A - Filling Diamonds | 910A - The Way to Home |
617A - Elephant | 48A - Rock-paper-scissors |
294A - Shaass and Oskols | 1213A - Chips Moving |
490A - Team Olympiad | 233A - Perfect Permutation |
1360A - Minimal Square | 467A - George and Accommodation |
893C - Rumor | 227B - Effective Approach |
1534B - Histogram Ugliness | 1611B - Team Composition Programmers and Mathematicians |