#include <bits/stdc++.h>
using namespace std;
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define ff first
#define ss second
#define ld long double
#define ll long long
#define pb push_back
#define INF 1e18
#define ppb pop_back
#define fl(i,n,m) for(int i=n;i<m;i++)
#define pii pair<int,int>
#define vi vector<int>
#define vll vector<ll>
#define print(a) for(auto &it:a) cout<<it<<" "; cout<<endl
#define mii map<int,int>
#define setbits(x) __builtin_popcountll(x)
#define sz(x) ((int)(x).size())
#define all(a) a.begin(),a.end()
#define yes cout<<"YES"<<endl
#define no cout<<"NO"<<endl
ll gcd(ll a, ll b) {if (b > a) {return gcd(b, a);} if (b == 0) {return a;} return gcd(b, a % b);}
ll expo(ll a, ll b, ll mod) {ll res = 1; while (b > 0) {if (b & 1)res = (res * a) % mod; a = (a * a) % mod; b = b >> 1;} return res;}
void extendgcd(ll a, ll b, ll*v) {if (b == 0) {v[0] = 1; v[1] = 0; v[2] = a; return ;} extendgcd(b, a % b, v); ll x = v[1]; v[1] = v[0] - v[1] * (a / b); v[0] = x; return;} //pass an arry of size1 3
ll mminv(ll a, ll b) {ll arr[3]; extendgcd(a, b, arr); return arr[0];} //for non prime b
ll mminvprime(ll a, ll b) {return expo(a, b - 2, b);}
bool revsort(ll a, ll b) {return a > b;}
ll mod_add(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a + b) % m) + m) % m;}
ll mod_mul(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a * b) % m) + m) % m;}
ll mod_sub(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a - b) % m) + m) % m;}
ll mod_div(ll a, ll b, ll m) {a = a % m; b = b % m; return (mod_mul(a, mminvprime(b, m), m) + m) % m;} //only for prime m
int pw(ll int a, ll int b, ll int m) {
if(b==0) {
return 1;
}
if(b%2 == 0) {
ll int t = pw(a, (b/2), m);
return (1ll*t*t)%m;
}
else {
ll int t = pw(a, (b-1)/2, m);
t = (1ll*t*t)%m;
return (1ll*a*t)%m;
}
}
const int N=500000;
const ll int mod = 1e9 + 7;
ll int fact[N], invfact[N];
void init() {
ll int p = mod;
fact[0]=1;
int i;
for(i=1; i<N; i++) {
fact[i] = (i*fact[i-1])%p;
}
i--;
invfact[i] = pw(fact[i], p-2, p);
for(i--; i>=0; i--) {
invfact[i] = (invfact[i+1]*(i+1))%p;
}
}
int ncr(int n, int r) {
return (((fact[n]*invfact[r])%mod)*invfact[n-r])%mod;
}
vector<int> sieve_of_eratosthenes(int n) {
vector<int> prm;
bool is_prime[n + 1];
memset(is_prime, true, sizeof(is_prime));
is_prime[0] = is_prime[1] = false;
for(int p = 2; p * p <= n; p++) {
if(is_prime[p]) {
for(int i = p * p; i <= n; i += p) {
is_prime[i] = false;
}
}
}
for(int i = 2; i <= n; i++) {
if(is_prime[i]) {
prm.pb(i);
}
}
return prm;
}
void solve() {
int n,m;
cin>>n>>m;
cout<<"? "<<1<<" "<<1<<endl;
cout.flush();
int x;
cin>>x;
x += 2;
int nc = 0,nr=0;
if(x>m){
nc = m,nr = x-m;
}
else{
nr = 1,nc = x-1;
}
int nr1=0,nc1=0;
if(x>n){
nr1 = n,nc1 = x-n;
}
else{
nc1 = 1,nr1 = x-1;
}
cout<<"? "<<nr<<" "<<nc<<endl;
cin>>x;
nr += x/2;
nc -= x/2;
cout<<"? "<<nr1<<" "<<nc1<<endl;
cin>>x;
nr1 -= x/2;
nc1 += x/2;
cout<<"? "<<nr<<" "<<nc<<endl;
cin>>x;
if(x==0){
cout<<"! "<<nr<<" "<<nc<<endl;
}
else{
cout<<"! "<<nr1<<" "<<nc1<<endl;
}
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
//init();
int tc=1;
cin>>tc;
while(tc--){
solve();
}
return 0;
}
230B - T-primes | 630A - Again Twenty Five |
1234D - Distinct Characters Queries | 1183A - Nearest Interesting Number |
1009E - Intercity Travelling | 1637B - MEX and Array |
224A - Parallelepiped | 964A - Splits |
1615A - Closing The Gap | 4C - Registration System |
1321A - Contest for Robots | 1451A - Subtract or Divide |
1B - Spreadsheet | 1177A - Digits Sequence (Easy Edition) |
1579A - Casimir's String Solitaire | 287B - Pipeline |
510A - Fox And Snake | 1520B - Ordinary Numbers |
1624A - Plus One on the Subset | 350A - TL |
1487A - Arena | 1520D - Same Differences |
376A - Lever | 1305A - Kuroni and the Gifts |
1609A - Divide and Multiply | 149B - Martian Clock |
205A - Little Elephant and Rozdil | 1609B - William the Vigilant |
978B - File Name | 1426B - Symmetric Matrix |