24A - Ring road - CodeForces Solution


graphs *1400

Please click on ads to support us..

C++ Code:

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define repin rep(i,0,n)
#define di(a) ll a;cin>>a;
#define sin string s;cin>>s;
#define dia di(a)
#define dib di(b)
#define dic di(c)
#define dix di(x)
#define diy di(y)
#define diz di(z)
#define dik di(k)
#define din di(n)
#define dim di(m)
#define diq di(q)
#define endl '\n'
#define precise(i) cout<<fixed<<setprecision(i)
#define V vector<ll>
#define pb push_back
#define M map<ll,ll>
#define take(a,n) for(int j=0;j<n;j++) cin>>a[j];
#define give(a,n) for(int j=0;j<n;j++) cout<<a[j]<<' ';
#define vpii vector<pair<ll,ll>>
#define all(x) x.begin(),x.end()
#define back(x) x.rbegin(),x.rend()
#define MOD 1000000007
#define db double
#define fastio ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
using namespace std;
const int N =998244353;

int vis[105];
int graph[105][105];
V g[105];

ll dfs(ll ver){
    ll ans=0,fl=0;
    vis[ver]=1;
    for(auto child:g[ver]){
        if(vis[child]) continue;
        fl=1;
        ans+=graph[ver][child];
        ans+=dfs(child);
    }
    if(!fl) ans = graph[ver][1];
    return ans;
}

int main(){
    fastio;

    ll T=1;
    // cin>>T;
    // int ogt=0;
    while(T--){
        // ogt++;
        din;
        ll sum=0;
        
        for (int i = 0; i <= n; ++i)
        {
            for (int j = 0; j <= n; ++j)
            {
                graph[i][j]=0;
            }
        }

        for (int i = 0; i < n; ++i)
        {
            dix;
            diy;
            dia;
            sum+=a;
            graph[x][y]=a;
            g[x].pb(y);
            g[y].pb(x);
        }

        ll cw = dfs(1);

        cout<<min(cw,sum-cw)<<endl;
        
       


    }
    return 0;
}   


Comments

Submit
0 Comments
More Questions

238. Product of Array Except Self
229. Majority Element II
222. Count Complete Tree Nodes
215. Kth Largest Element in an Array
198. House Robber
153. Find Minimum in Rotated Sorted Array
150. Evaluate Reverse Polish Notation
144. Binary Tree Preorder Traversal
137. Single Number II
130. Surrounded Regions
129. Sum Root to Leaf Numbers
120. Triangle
102. Binary Tree Level Order Traversal
96. Unique Binary Search Trees
75. Sort Colors
74. Search a 2D Matrix
71. Simplify Path
62. Unique Paths
50. Pow(x, n)
43. Multiply Strings
34. Find First and Last Position of Element in Sorted Array
33. Search in Rotated Sorted Array
17. Letter Combinations of a Phone Number
5. Longest Palindromic Substring
3. Longest Substring Without Repeating Characters
1312. Minimum Insertion Steps to Make a String Palindrome
1092. Shortest Common Supersequence
1044. Longest Duplicate Substring
1032. Stream of Characters
987. Vertical Order Traversal of a Binary Tree