27B - Tournament - CodeForces Solution


bitmasks brute force dfs and similar greedy *1300

Please click on ads to support us..

C++ Code:

#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>  //  --> PBDS
#include<ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds; 
using ll = long long;
using ull = unsigned long long;

const int mod = 1e9+7;
const int mod2 = 998244353;

#define what_is(x) cerr << #x << " is " << x << endl;
#define prec(n) fixed << setprecision(n)
#define inf (ll)1e18
#define pb push_back
#define ppb pop_back
#define pf push_front
#define ppf pop_front
#define all(x) (x).begin(),(x).end()
#define trail(x) __builtin_ctzll(x) // -> number of trailing zeros
#define pll pair<ll,ll>
#define mp make_pair
#define fr first
#define sc second
#define maxpq priority_queue<ll>
#define minpq priority_queue<ll, vector<ll>, greater<ll> >
#define nl "\n"
#define lb lower_bound
#define ub upper_bound
#define oset tree<ll, null_type,less<ll>, rb_tree_tag,tree_order_statistics_node_update> // (*s.find_by_order)(s.order_of_key)(insert,erase,size,lb,ub)
/*------------------------------------------------------------------------------------------------------------*/
ll countSetBits(ll n) { ll count = 0; while (n) { count += n & 1; n >>= 1;} return count; }
ll gcd(ll a, ll b) {if (b > a) {return gcd(b, a);} if (b == 0) {return a;} return gcd(b, a % b);}
bool powerOfTwo(ll n) { return n && (!(n & (n-1))); }
void toLower(string& s) { transform(s.begin(), s.end(), s.begin(), ::tolower); }
void toUpper(string& s) { transform(s.begin(), s.end(), s.begin(), ::toupper); }
/*************************************************************************************************************/

vector<ll> primes; // all the primes till (1e7)
vector<bool> seive(1e7+10,true);
void createSeive()
{
    seive[0] = seive[1] = false;
    for(int i=2;i*i<=int(1e7);++i){
        if(seive[i])
        {
            for(int j=i*i;j<=int(1e7);j+=i) seive[j]=false;
        }
    }
    for(int i=0;i<seive.size();++i) if(seive[i]) primes.pb(i);
}

ll binexpo(ll a, ll b, ll m) {
    a %= m;
    ll res = 1;
    while (b > 0) {
        if (b & 1)
        res = (res * a) % m;
        a = (a * a) % m;
        b >>= 1;
    }
    return res;
}
ll modInverse(ll n, ll mod)  // euler's totient --> eulers theorm --> fermat's
{
    return binexpo(n, mod - 2, mod);  // MMI of A is --> A^(mod-2) % mod
}
vector<ll>fact;
void factorial(ll n,ll mod)
{
    fact.resize(n+1);
    fact[0]=1;
    for(int i=1;i<=n;++i) fact[i] = (fact[i-1]*i) % mod;
}
ll nCrModPFermat(ll n, ll r, ll mod)  // nCr % mod calculation
{
    fact.resize(n+1);
    if (n < r) return 0;  // If n<r, then nCr should return 0
    if (r == 0) return 1;  // Base case
    fact[0] = 1;
    for (int i = 1; i <= n; i++) fact[i] = (fact[i - 1] * i) % mod;
    return (fact[n] * modInverse(fact[r], mod) % mod* modInverse(fact[n - r], mod) % mod)% mod;
}

bool isPrime(ll n)
{
    // Corner case
    if (n <= 1) return false;
    // Check from 2 to square root of n
    for (int i = 2; i*i <= n; i++)
        if (n % i == 0) return false;
    return true;
}

class DSU{
    vector<ll> parent;
    vector<ll> subtree_size;
    ll N;
public:
    DSU(ll n){
        N = n;
        parent = vector<ll>(n+1, 0);
        subtree_size = vector<ll>(n+1, 1);

        for(int i=1; i<=n; i++) parent[i] = i;
    }

    ll findRoot(ll u){
        while(u != parent[u]){
            parent[u] = parent[parent[u]]; //Path compression
            u = parent[u];
        }

        return u;
    }

    bool combine(ll u, ll v){
        ll ru = findRoot(u); // root of u
        ll rv = findRoot(v); // root of v

        if(ru == rv) return false; // no need to join(same group)
        
        // small to large merging --> (union by rank or size)
        if(subtree_size[ru] > subtree_size[rv]){
            parent[rv] = ru;
            subtree_size[ru] += subtree_size[rv];
        } else{
            parent[ru] = rv;
            subtree_size[rv] += subtree_size[ru];
        }
        return true;
    }
};
/********************* KMP (pattern matching)*********************/
ll kmp(string String, string pattern) {
  ll i = 0, j = 0, m = pattern.length(), n = String.length();
  pattern = '#' + pattern; //just shifting the pattern indices by 1
  vector < ll > piTable(m + 1, 0);
  for (int i = 2; i <= m; i++) {
    while (j <= m && pattern[j + 1] == pattern[i])
      piTable[i++] = ++j;
    j = 0;
  }
  j = 0;
  for (int i = 0; i < n; i++) {
    if (pattern[j + 1] != String[i]) {
      while (j != 0 && pattern[j + 1] != String[i])
        j = piTable[j];
    }
    j++;
    if (j == m) return (i - m + 1); // index of the pattern in the string
  }
  return -1; // not found
}
/******************************************************************/
void precompute()
{
    
}

void solve()
{
    ll n; cin >> n;
    set<pair<ll,ll>>sp;
    map<ll,ll>mp;
    ll k = (n * (n-1) )/2 - 1;
    for (ll i = 0; i < k ; ++i)
    {
        ll x,y; cin >> x >> y;
        mp[x]++;
        sp.insert({x,y});
        sp.insert({y,x});
    }
    
    set<pair<ll,ll>> sp2;
    for (ll i = 1; i <=n ; ++i)
    {
        for (ll j = i+1; j <=n; ++j)
        {
            sp2.insert({i,j});
            sp2.insert({j,i});
        }
    }
    
    
    pair<ll,ll> nhihua;
    ll one,second;
    for(auto pr : sp2)
    {
        if(sp.find(pr) == sp.end())
        {
            one = pr.fr;
            second = pr.sc;
            break;
        }
    }
    
    
    if(mp[one] > mp[second])
    {
        cout << one << " " << second << endl;
    }else{
        cout << second << " " << one << endl;
    }
    
    
    
    
    
    
    
    
    
}

signed main() {
    
    ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); // fast io
    precompute();
    int tc = 1;
    // cin >> tc;
    for(int t=1;t<=tc;++t)
    {
        //cout << "Case #" << i << ": ";
        solve();
    } 
return 0;  
}
//end
  		 		    				 			     	  	


Comments

Submit
0 Comments
More Questions

977. Squares of a Sorted Array
852. Peak Index in a Mountain Array
461. Hamming Distance
1748. Sum of Unique Elements
897. Increasing Order Search Tree
905. Sort Array By Parity
1351. Count Negative Numbers in a Sorted Matrix
617. Merge Two Binary Trees
1450. Number of Students Doing Homework at a Given Time
700. Search in a Binary Search Tree
590. N-ary Tree Postorder Traversal
589. N-ary Tree Preorder Traversal
1299. Replace Elements with Greatest Element on Right Side
1768. Merge Strings Alternately
561. Array Partition I
1374. Generate a String With Characters That Have Odd Counts
1822. Sign of the Product of an Array
1464. Maximum Product of Two Elements in an Array
1323. Maximum 69 Number
832. Flipping an Image
1295. Find Numbers with Even Number of Digits
1704. Determine if String Halves Are Alike
1732. Find the Highest Altitude
709. To Lower Case
1688. Count of Matches in Tournament
1684. Count the Number of Consistent Strings
1588. Sum of All Odd Length Subarrays
1662. Check If Two String Arrays are Equivalent
1832. Check if the Sentence Is Pangram
1678. Goal Parser Interpretation