from itertools import permutations
from typing import List
def initial_order_for_maximum_happiness(mat: List[List[int]]) -> int:
def calculate_happiness(student: List[int]) -> int:
hap = 0
n = 5
while student:
pair = [(student[i], student[i+1]) for i in range(0, n-1, 2)]
for i, j in pair:
hap += mat[i][j]
hap += mat[j][i]
n -= 1
student = student[1:]
return hap
num = [0, 1, 2, 3, 4]
possible = list(permutations(num))
happiness = 0
for order in possible:
hap = calculate_happiness(order)
happiness = max(happiness, hap)
return happiness
a = []
for i in range(5):
b = [int(j) for j in input().split()]
a.append(b)
d = initial_order_for_maximum_happiness(a)
print(d)
#include <bits/stdc++.h>
using namespace std;
int g[6][6];
int main()
{
int n=5;
for(int i=0;i<n;i++)
for(int j=0; j<n; j++)
cin>>g[i][j];
int p[6], pans[6], ans=-1, tmp;
for(int i=0; i<n; ++i)
p[i]=i;
do{
tmp=g[p[0]][p[1]]+g[p[1]][p[0]];
tmp+=g[p[2]][p[3]]+g[p[3]][p[2]];
tmp+=g[p[1]][p[2]]+g[p[2]][p[1]];
tmp+=g[p[3]][p[4]]+g[p[4]][p[3]];
tmp+=g[p[2]][p[3]]+g[p[3]][p[2]];
tmp+=g[p[3]][p[4]]+g[p[4]][p[3]];
if(tmp>ans){
ans=tmp;
for(int i=0; i<n; ++i)
pans[i]=p[i];
}
}
while(next_permutation(p, p+n));
cout<<ans<<endl;
return 0;
}
881. Boats to Save People | 497. Random Point in Non-overlapping Rectangles |
528. Random Pick with Weight | 470. Implement Rand10() Using Rand7() |
866. Prime Palindrome | 1516A - Tit for Tat |
622. Design Circular Queue | 814. Binary Tree Pruning |
791. Custom Sort String | 787. Cheapest Flights Within K Stops |
779. K-th Symbol in Grammar | 701. Insert into a Binary Search Tree |
429. N-ary Tree Level Order Traversal | 739. Daily Temperatures |
647. Palindromic Substrings | 583. Delete Operation for Two Strings |
518. Coin Change 2 | 516. Longest Palindromic Subsequence |
468. Validate IP Address | 450. Delete Node in a BST |
445. Add Two Numbers II | 442. Find All Duplicates in an Array |
437. Path Sum III | 436. Find Right Interval |
435. Non-overlapping Intervals | 406. Queue Reconstruction by Height |
380. Insert Delete GetRandom O(1) | 332. Reconstruct Itinerary |
368. Largest Divisible Subset | 377. Combination Sum IV |