#include <random>
#include <bits/stdc++.h>
#define rep(i,from,to) for(int i=from;i<to;i++)
#define ite(i,arr) for(auto &i:arr)
#define MID(l,r) int mid=(l+r)>>1
#define ALL(arr) arr.begin(),arr.end()
#define AXY(a,x,y) int x=a.first,y=a.second
#define vc vector
#define vi vector<int>
#define vll vector<ll>
#define pii pair<int,int>
#define endl '\n'
#define __builtin_popcount __popcnt
#define __builtin_popcountl __popcnt
#define __builtin_popcountll __popcnt
#define __builtin_popcountlll __popcnt
typedef long long ll;
using namespace std;
namespace Geo {
const double eps = 1e-8;
const double P = acos(-1);
struct Point {
double x, y;
Point() {
x = 0, y = 0;
}
Point(double x, double y) {
this->x = x;
this->y = y;
}
};
Point operator +(Point a, Point b) {
return Point(a.x + b.x, a.y + b.y);
}
Point operator -(Point a, Point b) {
return Point(a.x - b.x, a.y - b.y);
}
Point operator *(double a, Point b) {
return Point(a * b.x, a * b.y);
}
Point operator *(Point b, double a) {
return Point(a * b.x, a * b.y);
}
Point operator /(Point b, double a) {
return Point(b.x / a, b.y / a);
}
double len(Point a) {
return sqrt(a.x * a.x + a.y * a.y);
}
double dis(Point a, Point b) {
return len(a - b);
}
bool operator ==(Point a, Point b) {
return dis(a, b) <= eps;
}
bool operator !=(Point a, Point b) {
return !(a == b);
}
double operator *(Point a, Point b) {
return a.x * b.x + a.y * b.y;
}
double operator ^(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
double getAngel(double b, double a, double c) {
return acos((a * a + c * c - b * b) / (2 * a * c));
}
double getAngel(Point a, Point b) {
return acos(a * b / len(a) / len(b));
}
}
#define int ll
signed mod = 1e9 + 9;
ll ADD(ll a, ll b) {
ll res = 0;
res += a;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
res += b;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
return res;
}
ll ADD(ll a, ll b, ll c) {
ll res = 0;
res += a;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
res += b;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
res += c;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
return res;
}
ll ADD(ll a, ll b, ll c, ll d) {
ll res = 0;
res += a;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
res += b;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
res += c;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
res += d;
if (res >= mod) res -= mod;
else if (res < 0) res += mod;
return res;
}
inline ll lowbit(ll b) { return b & (-b); }
inline ll qmi(ll a, ll b) {
if (b == -1) return qmi(a, mod - 2);
a %= mod;
ll res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
ll inv(ll b) {
return qmi(b, mod - 2);
}
const ll N = 1e6 + 10;
ll invArr[N];
ll fact[(ll)N + 5];
ll inv_fact[(ll)N + 5];
int prime[(int)N + 5];
int valid[(int)N + 5];
int pn = 0;
//int phi[N];
//int mu[N];
int sigma0[N];//因子个数
int e0[N];//最小因子的个数
//int sigma1[N];//约数和
//int e1[N];//g[i] 表示 i 的最小质因子的 p^0+p^1+p^2+..+p^k.
inline void sieve() {
//phi[1] = 1;
sigma0[1] = 1;
e0[1] = 1;
//e1[1] = 1;
//sigma1[1]=1;
//mu[1] = 1;
rep(i, 2, N) {
if (!valid[i]) {
valid[i] = i;
prime[pn++] = i;
//phi[i] = i - 1;
sigma0[i] = 2;
e0[i] = 1;
//e1[i]=i+1;
//sigma1[i]=i+1;
//mu[i] = -1;
}
for (int j = 0; j < pn && i * prime[j] < N; j++) {
valid[i * prime[j]] = prime[j];
if (i % prime[j] == 0) {
//phi[i * prime[j]] = phi[i] * prime[j];
e0[i * prime[j]] = e0[i] + 1;
sigma0[i * prime[j]] = sigma0[i] / (e0[i] + 1) * (e0[i] + 2);
//e1[i*prime[j]]=e1[i]*prime[j]+1;
//sigma1[i*prime[j]]=sigma1[i]/e1[i]*e1[i*prime[j]];
//mu[i * prime[j]] = 0;
break;
}
else {
//phi[i * prime[j]] = phi[i] * phi[prime[j]];
e0[i * prime[j]] = 1;
sigma0[i * prime[j]] = sigma0[i] * sigma0[prime[j]];
//e1[i*prime[j]]=prime[j]+1;
//sigma1[i*prime[j]]=sigma1[i]*sigma1[prime[j]];
//mu[i * prime[j]] = mu[i] * mu[prime[j]];
}
}
}
}
void getInvArr() {
invArr[1] = 1;
rep(i, 2, N) {
invArr[i] = invArr[mod % i] * (mod - mod / i) % mod;
}
}
inline void getFact() {
fact[0] = fact[1] = 1;
for (ll i = 2; i <= N; i++) {
fact[i] = i * fact[i - 1] % mod;
}
}
inline void getInv() {
inv_fact[N] = inv(fact[N]);
for (ll i = N - 1; i >= 0; i--) {
inv_fact[i] = inv_fact[i + 1] * (i + 1) % mod;
}
}
inline ll C(ll n, ll m) {
if (n < 0 || m < 0 || n < m) {
return 0;
}
if (n == m && n == 0) {
return 1;
}
ll res = fact[n] * inv_fact[m] % mod * inv_fact[n - m] % mod;
return res;
}
ll read() {
ll x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch>'9')
{
if (ch == '-')
f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
return x * f;
}
void write(int x)
{
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
return;
}
//125970
int f[N];
int l, r;
void func(int k) {
if (k >= 4) {
if (l % 2 == 0 || l + 4 <= r) {
l += l % 2;
cout << "0\n4\n" << l << ' ' << l + 1 << ' ' << l + 2 << ' ' << l + 3 << endl;
}
else{
func(3);
}
}
else if (k == 3) {
int dig = log2(l);
int mid = (1ll << dig + 1) + (1ll << dig);
int num = mid ^ l;
if (num<=r&&mid<=r) {
cout << (num^mid^l) << endl;
cout << 3 << endl;
cout << num << ' ' << mid << ' ' << l << endl;
}
else {
func(2);
}
}
else if (k == 2) {
if (l % 2 == 0 || (l + 2) <= r) {
l += l % 2;
cout << "1\n2\n" << l << ' ' << l + 1 << endl;
}
else if(l>(l^(l+1))){
cout <<(l^(l+1))<< "\n2\n" << l << ' ' << l + 1 << endl;
}
else {
func(1);
}
}
else {
cout << l << endl;
cout << 1 << endl;
cout << l << endl;
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> l >> r;
int k;
cin >> k;
k = min(k, r - l + 1);
func(k);
}
/*
6
0 0 1
0 1 0
0 0 0
0 0 2
0 0 3
0 2 0
*/
Number of triangles | AND path in a binary tree |
Factorial equations | Removal of vertices |
Happy segments | Cyclic shifts |
Zoos | Build a graph |
Almost correct bracket sequence | Count of integers |
Differences of the permutations | Doctor's Secret |
Back to School | I am Easy |
Teddy and Tweety | Partitioning binary strings |
Special sets | Smallest chosen word |
Going to office | Color the boxes |
Missing numbers | Maximum sum |
13 Reasons Why | Friend's Relationship |
Health of a person | Divisibility |
A. Movement | Numbers in a matrix |
Sequences | Split houses |