#include <iostream>
#include <bits/stdc++.h>
// policy based datastructure
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/tree_policy.hpp>
// using namespace __gnu_pbds;
// #define indexed_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define ll long long
#define en '\n'
#define ff first
#define ss second
#define pb push_back
#define MP make_pair
#define mod 1000000007
#define mod2 998244353
#define fast \
ios_base::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef priority_queue<ll> pqi;
typedef priority_queue<ll, vi, greater<ll>> minpqi;
typedef pair<ll, ll> pii;
#define debarr(a, n) \
cout << #a << " : "; \
for (int i = 0; i < n; i++) \
cerr << a[i] << " "; \
cerr << endl;
#define debmat(mat, row, col) \
cout << #mat << " :\n"; \
for (int i = 0; i < row; i++) \
{ \
for (int j = 0; j < col; j++) \
cerr << mat[i][j] << " "; \
cerr << endl; \
}
#define pr(...) dbs(#__VA_ARGS__, __VA_ARGS__)
template <class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p)
{
return os << "(" << p.first << ", " << p.second << ")";
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
ostream &operator<<(ostream &os, const unordered_set<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class S, class T>
ostream &operator<<(ostream &os, const unordered_map<S, T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
ostream &operator<<(ostream &os, const set<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
ostream &operator<<(ostream &os, const multiset<T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class S, class T>
ostream &operator<<(ostream &os, const map<S, T> &p)
{
os << "[ ";
for (auto &it : p)
os << it << " ";
return os << "]";
}
template <class T>
void dbs(string str, T t) { cerr << str << " : " << t << "\n"; }
template <class T, class... S>
void dbs(string str, T t, S... s)
{
int idx = str.find(',');
cerr << str.substr(0, idx) << " : " << t << ",";
dbs(str.substr(idx + 1), s...);
}
template <class T>
void prc(T a, T b)
{
cerr << "[";
for (T i = a; i != b; ++i)
{
if (i != a)
cerr << ", ";
cerr << *i;
}
cerr << "]\n";
}
#define all(x) x.begin(), x.end()
#define present(c, key) (find(all(c), key) != c.end())
#define tr(c, it) for (auto it : c)
#define fr(i, s, e) for (ll i = s; i < e; i++)
#define revfr(i, s, e) for (ll i = s - 1; i >= e; i--)
#define getv(v, n) \
for (ll i = 0; i < n; i++) \
cin >> v[i];
template <typename T>
ostream &operator<<(ostream &os, vector<T> &v)
{
for (auto element : v)
{
os << element << ' ';
}
return os;
}
inline void add(ll &a, ll b)
{
a += b;
if (a >= mod)
a -= mod;
}
inline void sub(ll &a, ll b)
{
a -= b;
if (a < 0)
a += mod;
}
inline ll mul(ll a, ll b, ll p = mod)
{
return (ll)((long long)a * b % p);
}
inline ll power(ll a, long long b, ll p = mod)
{
ll res = 1;
while (b > 0)
{
if (b & 1)
{
res = mul(res, a, p);
}
a = mul(a, a, p);
b >>= 1;
}
return res;
}
inline ll binpow(ll a, long long b)
{
ll res = 1;
while (b > 0)
{
if (b & 1)
{
res = res * a;
}
a = a * a;
b >>= 1;
}
return res;
}
inline ll inv(ll a, ll p = mod)
{
a %= p;
if (a < 0)
a += p;
ll b = p, u = 0, v = 1;
while (a)
{
ll t = b / a;
b -= t * a;
swap(a, b);
u -= t * v;
swap(u, v);
}
if (u < 0)
u += p;
return u;
}
// inline ll lsb(ll x)
// {
// return x&(~(x-1));
// }
// ll modexp2(ll a, ll b, ll c, ll p) // calculate (a^(b^c))%prime
// {
// // By Fermat's Little Theorem (a^(p-1))%p = 1 if p is prime
// ll x = power(b,c,p-1); // so we first find remainder when b^c is divided by p-1
// return (power(a,x,p)); // then just do (a^remainder)%p
// }
ll gcd(ll a, ll b)
{
if (a == 0 or b == 0)
return a ^ b;
return gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * (b / gcd(a, b));
}
void fread()
{
// #ifdef ONLINE_JUDGE
freopen("./input.txt", "r", stdin);
freopen("./output.txt", "w", stdout);
// #endif
}
void solve()
{
ll n,a,b;
cin>>n>>a>>b;
vi v(n);
getv(v,n);
map<ll,ll>sol;
fr(i,0,n)sol[v[i]]=-1;
vi ans(n,0);
if(a==b)
{
fr(i,0,n)
{
if(sol[a-v[i]]==0)
{
cout<<"NO\n";
return;
}
}
cout<<"YES\n";
fr(i,0,n)cout<<"0 ";
cout<<en;
return;
}
vi nxt;
fr(i,0,n)
{
if(sol[v[i]]!=-1)continue;
ll a1=a-v[i];
ll b1=b-v[i];
nxt.clear();
nxt.pb(v[i]);
ll done=0;
while(!done)
{
if(sol[a1]==-1 and sol[b1]==-1)
{
nxt.pb(a1);
nxt.pb(b1);
swap(a1,b1);
a1=(a-a1);
b1=(b-b1);
}
else if(sol[a1]==-1)
{
nxt.pb(a1);
done=1;
fr(j,0,nxt.size())sol[nxt[j]]=1;
}
else if(sol[b1]==-1)
{
nxt.pb(b1);
done=1;
fr(j,0,nxt.size())sol[nxt[j]]=2;
}
else
{
cout<<"NO\n";
return;
}
}
}
cout<<"YES\n";
fr(i,0,n)cout<<(sol[v[i]]-1)<<" ";
cout<<en;
}
using namespace std;
int main()
{
fast
// pre();
// fread();
ll _t = 1;
// cin >> _t;
fr(i, 1, _t + 1)
{
// cerr<<"i="<<i<<en;
solve();
}
return 0;
}
HRDSEQ Hard Sequence | DRCHEF Doctor Chef |
559. Maximum Depth of N-ary Tree | 821. Shortest Distance to a Character |
1441. Build an Array With Stack Operations | 1356. Sort Integers by The Number of 1 Bits |
922. Sort Array By Parity II | 344. Reverse String |
1047. Remove All Adjacent Duplicates In String | 977. Squares of a Sorted Array |
852. Peak Index in a Mountain Array | 461. Hamming Distance |
1748. Sum of Unique Elements | 897. Increasing Order Search Tree |
905. Sort Array By Parity | 1351. Count Negative Numbers in a Sorted Matrix |
617. Merge Two Binary Trees | 1450. Number of Students Doing Homework at a Given Time |
700. Search in a Binary Search Tree | 590. N-ary Tree Postorder Traversal |
589. N-ary Tree Preorder Traversal | 1299. Replace Elements with Greatest Element on Right Side |
1768. Merge Strings Alternately | 561. Array Partition I |
1374. Generate a String With Characters That Have Odd Counts | 1822. Sign of the Product of an Array |
1464. Maximum Product of Two Elements in an Array | 1323. Maximum 69 Number |
832. Flipping an Image | 1295. Find Numbers with Even Number of Digits |