#include <iostream>
#include <cstring>
#include <iomanip>
#include <algorithm>
#include <stack>
#include <queue>
#include <numeric>
#include <cassert>
#include <bitset>
#include <cstdio>
#include <vector>
#include <unordered_set>
#include <cmath>
#include <map>
#include <unordered_map>
#include <set>
#include <deque>
#include <tuple>
#define all(a) a.begin(), a.end()
#define cnt0(x) __builtin_ctz(x)
#define endl '\n'
#define itn int
#define ll long long
#define ull unsigned long long
#define rep(i, a, b) for(int i = a;i <= b; i ++)
#define per(i, a, b) for(int i = a;i >= b; i --)
#define cntone(x) __builtin_popcount(x)
#define db double
#define x first
#define y second
#define AC main(void)
#define HYS std::ios::sync_with_stdio(false);std::cin.tie(0);std::cout.tie(0);
typedef std::pair<int, int > PII;
typedef std::pair<int, std::pair<int, int>> PIII;
typedef std::pair<ll, ll> Pll;
typedef std::pair<double, double> PDD;
using ld = double long;
const long double eps = 1e-9;
int d1[] = {0, 0, 1, -1};
int d2[] = {1, -1, 0, 0};
const int N = 2e5 + 10;
const int INF = 0x3f3f3f3f;
int n, m, k;
int _ = 1;
const int MOD = 10007;
struct node{
int l, r, cnt;
}tr[N * 21];
struct Historical_Segment_Tree{
int idx;
int root[N];
inline int build(int l, int r){
int q = ++ idx;
if(l == r) return q;
int mid = l + r >> 1;
tr[q].l = build(l, mid);//存的是左儿子的编号并非边界
tr[q].r = build(mid + 1, r);
return q;
}
inline int insert(int p, int l, int r, int x, int sum){//需要用到的上一个版本root[i - 1](返回的值是当前版本的root)
int q = ++ idx;
tr[q] = tr[p];//复制上一个节点的信息
if(l == r){
tr[q].cnt += sum;//新版本的信息加1
return q;
}
int mid = l + r >> 1;
if(x <= mid) tr[q].l = insert(tr[p].l, l, mid, x, sum);//在左子树则需要更新信息,否则保留原本信息就可以
else tr[q].r = insert(tr[p].r, mid + 1, r, x, sum);
tr[q].cnt = tr[tr[q].l].cnt + tr[tr[q].r].cnt;
return q;
}
inline int query(int p, int q, int L, int R, int l, int r){
if(L >= l && R <= r) return tr[q].cnt - tr[p].cnt;
int mid = L + R >> 1;
int cnt = 0;
if(l <= mid) cnt += query(tr[p].l, tr[q].l, L, mid, l, r);
if(r > mid) cnt += query(tr[p].r, tr[q].r, mid + 1, R, l, r);
return cnt;
}
inline int query(int p, int q, int l, int r, int k){//区间k小
if(l == r) return l;
int mid = l + r >> 1;
int cnt = tr[tr[q].l].cnt - tr[tr[p].l].cnt;
if(cnt >= k) return query(tr[p].l, tr[q].l, l, mid, k);
else return query(tr[p].r, tr[q].r, mid + 1, r, k - cnt);
}
}HST;
struct Aho_Corasick_Automaton{
int cnt[N], tr[N][26], idx, q[N], nxt[N], mx[N];
int pre[N];//跳到上一个有终止节点的位置
int son[N];//
int id[N], reid[N];//每个字符串原串位置的标记
int sz[N], h[N], e[N], ne[N], dfn[N], tdl, idx1;//ac自动机fail树上建dfs序数组
int vis[N * 2], used[N * 2];//找环
inline void add(int a, int b){
ne[idx1] = h[a], e[idx1] = b, h[a] = idx1 ++;
}
//多组测试清空操作
inline void init(){
for(int i = 0; i <= idx; i ++ ){
memset(tr[i], 0, sizeof tr[i]);
nxt[i] = cnt[i] = ne[i] = 0, h[i] = -1;
vis[i] = used[i] = 0;
}
idx = tdl = idx1 = 0;
}
inline bool findcycle(int u){//AC自动机找从0号是否可以有环(不能经过字符串被标记的地方)
if(used[u] == 1) return true;
if(used[u] == -1) return false;
vis[u] = used[u] = true;
for(int i = 0; i < 2; i ++)
if(!son[tr[u][i]]) if(findcycle(tr[u][i])) return true;
used[u] = -1;
return false;
}
inline void dfs(int u){//dfs序
sz[u] = 1, dfn[u] = ++ tdl;
for(int i = h[u]; ~i; i = ne[i]){
int j = e[i];
dfs(j);
sz[u] += sz[j];
}
}
inline int insert(std::string &s, int x){//插入字符 和插入的是第几个字符
int p = 0;
for(char &ch : s){
int u = ch - 'a';
if(!tr[p][u]){
tr[p][u] = ++ idx;
}
p = tr[p][u];
}
id[p] = x;//标记第x个字符的结尾
reid[x] = p;
cnt[p] ++;
son[p] = 1;
mx[p] = std::max(mx[p], (int)s.length());
return p;
}
inline void build(){//建立ac自动机
int p = 0;
int hh = 0,tt = -1;
for(int i = 0; i < 26; i ++)
if(tr[p][i]) q[++ tt] = tr[p][i];
while(hh <= tt){
int tq = q[hh ++];
for(int i = 0; i < 26; i ++){
int j = tr[tq][i];
if(!tr[tq][i]){
tr[tq][i] = tr[nxt[tq]][i];
}
else{
q[++ tt] = tr[tq][i];
nxt[j] = tr[nxt[tq]][i];
if(cnt[nxt[j]]) pre[j] = nxt[j];
else pre[j] = pre[nxt[j]];
son[j] |= son[nxt[j]];//标记能到达终止节点路径上的所有点
}
}
}
}
//ac自动机fail树上建dfs序的建边(记得inith)
inline void failtree(){
memset(h, -1, sizeof h);
for(int i = 1; i <= idx; i ++) add(nxt[i], i);
dfs(0);
}
inline int query(std::string &s){
int res = 0, j = 0;
for(char &ch : s){
int u = ch - '0';
j = tr[j][u];
int p = u;
while(p){
res += cnt[p];
p = nxt[p];
}
}
return res;
}
}acam;
std::string str[N];
void solve(){
std::cin >> n >> m;
auto &root = HST.root;
const auto &tdl = acam.tdl;
const auto &sz = acam.sz, &dfn = acam.dfn, &id = acam.reid;
for(int i = 1; i <= n; i ++){
std::cin >> str[i];
acam.insert(str[i], i);
}
acam.build();
acam.failtree();
HST.build(1, tdl);
for(int i = 1; i <= n; i ++){
int p = 0;
for(int j = 0; str[i][j]; j ++){
p = acam.tr[p][str[i][j] - 'a'];
if(!j) root[i] = HST.insert(root[i - 1], 1, tdl, dfn[p], 1);
else root[i] = HST.insert(root[i], 1, tdl, dfn[p], 1);
}
}
while(m --){
int L, R, K;
std::cin >> L >> R >> K;
L --;
K = id[K];
std::cout << HST.query(root[L], root[R], 1, tdl, dfn[K], dfn[K] + sz[K] - 1) << '\n';
}
}
int AC{
HYS
// std::cin >> _;
while(_ --)
solve();
return 0;
}
489A - SwapSort | 932A - Palindromic Supersequence |
433A - Kitahara Haruki's Gift | 672A - Summer Camp |
1277A - Happy Birthday Polycarp | 577A - Multiplication Table |
817C - Really Big Numbers | 1355A - Sequence with Digits |
977B - Two-gram | 993A - Two Squares |
1659D - Reverse Sort Sum | 1659A - Red Versus Blue |
1659B - Bit Flipping | 1480B - The Great Hero |
1519B - The Cake Is a Lie | 1659C - Line Empire |
515A - Drazil and Date | 1084B - Kvass and the Fair Nut |
1101A - Minimum Integer | 985D - Sand Fortress |
1279A - New Year Garland | 1279B - Verse For Santa |
202A - LLPS | 978A - Remove Duplicates |
1304A - Two Rabbits | 225A - Dice Tower |
1660D - Maximum Product Strikes Back | 1513A - Array and Peaks |
1251B - Binary Palindromes | 768B - Code For 1 |