#include "bits/stdc++.h"
#ifdef ON_PC
#include "debug.h"
#else
#define debug(x...)
#define debugV(x...)
#endif
using namespace std;
typedef long long ll;
struct UnionFind {
int _n;
vector<int> _par, _cnt;
// 初始化 [0, n - 1]
UnionFind() {}
UnionFind(int n) : _n(n) {
_par.resize(_n);
_cnt.resize(_n, 1);
for (int i = 0; i < _n; i++) _par[i] = i;
}
int root(int x) {
if (_par[x] == x) return x;
return _par[x] = root(_par[x]);
}
inline bool same(int x, int y) { return root(x) == root(y); }
void unite(int x, int y) {
x = root(x);
y = root(y);
if (x == y) return;
if (_cnt[y] < _cnt[x]) std::swap(x, y);
_par[x] = y;
_cnt[y] += _cnt[x];
_cnt[x] = 0;
}
inline int cnt(int x) { return _cnt[root(x)]; }
};
template <typename T>
class graph {
public:
struct edge {
int from;
int to;
T cost;
};
vector<edge> edges;
vector<vector<int>> g;
int n;
graph(int _n) : n(_n) { g.resize(n); }
virtual int add(int from, int to, T cost) = 0;
};
template <typename T>
class undigraph : public graph<T> {
public:
using graph<T>::edges;
using graph<T>::g;
using graph<T>::n;
undigraph(int _n) : graph<T>(_n) {}
int add(int from, int to, T cost = 1) {
assert(0 <= from && from < n && 0 <= to && to < n);
int id = (int)edges.size();
g[from].push_back(id);
g[to].push_back(id);
edges.push_back({from, to, cost});
return id;
}
};
template <typename T>
class undigraph_dfs_forest : public undigraph<T> {
public:
using undigraph<T>::edges;
using undigraph<T>::g;
using undigraph<T>::n;
vector<int> depth;
unordered_set<int> bridges; // edge ids
vector<int> across_span_edge_cnt;
vector<bool> vis;
// 1:from->to 0:to->from
// parent->children , children->ancestor
vector<bool> direction; // <edge_id, bool>
undigraph_dfs_forest(int _n) : undigraph<T>(_n) {}
void init() {
depth = vector<int>(n, -1);
across_span_edge_cnt = vector<int>(n, 0);
direction = vector<bool>(edges.size(), 0);
vis = vector<bool>(edges.size(), 0);
}
void clear() {
depth.clear();
bridges.clear();
across_span_edge_cnt.clear();
direction.clear();
}
private:
void do_dfs(int u, int fa) {
for (int id : g[u]) {
auto& e = edges[id];
int v = e.from ^ e.to ^ u;
if (vis[id]) {
continue;
}
vis[id] = 1;
if (depth[v] != -1) {
if (depth[v] < depth[u]) {
across_span_edge_cnt[u]++;
across_span_edge_cnt[v]--;
direction[id] = (e.from == u);
}
continue;
}
direction[id] = (e.from == u);
depth[v] = depth[u] + 1;
do_dfs(v, u);
across_span_edge_cnt[u] += across_span_edge_cnt[v];
if (across_span_edge_cnt[v] == 0) {
bridges.insert(id);
}
}
}
void do_dfs_from(int v) {
depth[v] = 0;
do_dfs(v, v);
}
public:
void dfs(int v) {
init();
do_dfs_from(v);
}
void dfs_all() {
init();
for (int v = 0; v < n; v++) {
if (depth[v] == -1) {
do_dfs_from(v);
}
}
}
};
template <typename T>
class forest : public graph<T> {
public:
using graph<T>::edges;
using graph<T>::g;
using graph<T>::n;
forest(int _n) : graph<T>(_n) {}
int add(int from, int to, T cost = 1) {
assert(0 <= from && from < n && 0 <= to && to < n);
int id = (int)edges.size();
assert(id < n - 1);
g[from].push_back(id);
g[to].push_back(id);
edges.push_back({from, to, cost});
return id;
}
};
template <typename T>
class dfs_forest : public forest<T> {
public:
using forest<T>::edges;
using forest<T>::g;
using forest<T>::n;
vector<int> pv;
vector<int> pe;
vector<int> order;
vector<int> pos;
vector<int> end;
vector<int> sz;
vector<int> root;
vector<int> depth;
vector<T> dist;
dfs_forest(int _n) : forest<T>(_n) {}
void init() {
pv = vector<int>(n, -1);
pe = vector<int>(n, -1);
order.clear();
pos = vector<int>(n, -1);
end = vector<int>(n, -1);
sz = vector<int>(n, 0);
root = vector<int>(n, -1);
depth = vector<int>(n, -1);
dist = vector<T>(n);
}
void clear() {
pv.clear();
pe.clear();
order.clear();
pos.clear();
end.clear();
sz.clear();
root.clear();
depth.clear();
dist.clear();
}
private:
void do_dfs(int v) {
pos[v] = (int)order.size();
order.push_back(v);
sz[v] = 1;
for (int id : g[v]) {
if (id == pe[v]) {
continue;
}
auto& e = edges[id];
int to = e.from ^ e.to ^ v;
depth[to] = depth[v] + 1;
dist[to] = dist[v] + e.cost;
pv[to] = v;
pe[to] = id;
root[to] = (root[v] != -1 ? root[v] : to);
do_dfs(to);
sz[v] += sz[to];
}
end[v] = (int)order.size() - 1;
}
void do_dfs_from(int v) {
depth[v] = 0;
dist[v] = T{};
root[v] = v;
pv[v] = pe[v] = -1;
do_dfs(v);
}
public:
void dfs(int v, bool clear_order = true) {
if (pv.empty()) {
init();
} else {
if (clear_order) {
order.clear();
}
}
do_dfs_from(v);
}
void dfs_all() {
init();
for (int v = 0; v < n; v++) {
if (depth[v] == -1) {
do_dfs_from(v);
}
}
assert((int)order.size() == n);
}
};
template <typename T>
class lca_forest : public dfs_forest<T> {
public:
using dfs_forest<T>::edges;
using dfs_forest<T>::g;
using dfs_forest<T>::n;
using dfs_forest<T>::pv;
using dfs_forest<T>::pos;
using dfs_forest<T>::end;
using dfs_forest<T>::depth;
int h;
vector<vector<int>> pr;
lca_forest(int _n) : dfs_forest<T>(_n) {}
inline void build_lca() {
assert(!pv.empty());
int max_depth = 0;
for (int i = 0; i < n; i++) {
max_depth = max(max_depth, depth[i]);
}
h = 1;
while ((1 << h) <= max_depth) {
h++;
}
pr.resize(n);
for (int i = 0; i < n; i++) {
pr[i].resize(h);
pr[i][0] = pv[i];
}
for (int j = 1; j < h; j++) {
for (int i = 0; i < n; i++) {
pr[i][j] = (pr[i][j - 1] == -1 ? -1 : pr[pr[i][j - 1]][j - 1]);
}
}
}
inline bool anc(int x, int y) {
return (pos[x] <= pos[y] && end[y] <= end[x]);
}
inline int go_up(int x, int up) {
assert(!pr.empty());
up = min(up, (1 << h) - 1);
for (int j = h - 1; j >= 0; j--) {
if (up & (1 << j)) {
x = pr[x][j];
if (x == -1) {
break;
}
}
}
return x;
}
inline int lca(int x, int y) {
assert(!pr.empty());
if (anc(x, y)) {
return x;
}
if (anc(y, x)) {
return y;
}
for (int j = h - 1; j >= 0; j--) {
if (pr[x][j] != -1 && !anc(pr[x][j], y)) {
x = pr[x][j];
}
}
return pr[x][0];
}
};
int main() {
int n, m, q;
cin >> n >> m >> q;
auto uf = UnionFind(n);
auto g = undigraph_dfs_forest<int>(n);
for (int i = 0, u, v; i < m; i++) {
cin >> u >> v;
u--;
v--;
g.add(u, v);
}
g.dfs(0);
for (int id = 0; id < g.edges.size(); id++) {
int u = g.edges[id].from, v = g.edges[id].to;
if (!g.bridges.count(id)) {
uf.unite(u, v);
}
}
// debugV(g.bridges);
auto new_g = lca_forest<int>(n);
for (int id = 0; id < g.edges.size(); id++) {
int u = g.edges[id].from, v = g.edges[id].to;
int pu = uf.root(u), pv = uf.root(v);
if (pu == pv) continue;
new_g.add(pu, pv);
debugV(pu, pv);
}
new_g.dfs_all();
new_g.build_lca();
vector<int> lca_cnt(n, 0), s_cnt(n, 0), d_cnt(n, 0);
int ok = 1;
unordered_set<int> roots;
for (int i = 0; i < q; i++) {
int s, d;
cin >> s >> d;
s--;
d--;
int ps = uf.root(s), pd = uf.root(d);
if (ps == pd) continue;
if (new_g.root[ps] != new_g.root[pd]) {
ok = 0;
continue;
}
roots.insert(new_g.root[ps]);
int lca = new_g.lca(ps, pd);
lca_cnt[lca]++;
s_cnt[ps]++;
d_cnt[pd]++;
}
debugV(roots);
if (ok) {
function<void(int)> dfs;
dfs = [&](int v) {
for (int id : new_g.g[v]) {
if (id == new_g.pe[v]) {
continue;
}
auto& e = new_g.edges[id];
int to = e.from ^ e.to ^ v;
dfs(to);
lca_cnt[v] += lca_cnt[to];
s_cnt[v] += s_cnt[to];
d_cnt[v] += d_cnt[to];
}
if (!roots.count(v)) {
debugV(v, lca_cnt[v], s_cnt[v], d_cnt[v]);
if (s_cnt[v] > lca_cnt[v] and d_cnt[v] > lca_cnt[v]) ok = 0;
}
};
for (int root : roots) dfs(root);
}
cout << (ok ? "Yes" : "No") << '\n';
return 0;
}
394. Decode String | 902. Numbers At Most N Given Digit Set |
221. Maximal Square | 1200. Minimum Absolute Difference |
1619B - Squares and Cubes | 1619A - Square String |
1629B - GCD Arrays | 1629A - Download More RAM |
1629C - Meximum Array | 1629D - Peculiar Movie Preferences |
1629E - Grid Xor | 1629F1 - Game on Sum (Easy Version) |
2148. Count Elements With Strictly Smaller and Greater Elements | 2149. Rearrange Array Elements by Sign |
2150. Find All Lonely Numbers in the Array | 2151. Maximum Good People Based on Statements |
2144. Minimum Cost of Buying Candies With Discount | Non empty subsets |
1630A - And Matching | 1630B - Range and Partition |
1630C - Paint the Middle | 1630D - Flipping Range |
1328A - Divisibility Problem | 339A - Helpful Maths |
4A - Watermelon | 476A - Dreamoon and Stairs |
1409A - Yet Another Two Integers Problem | 977A - Wrong Subtraction |
263A - Beautiful Matrix | 180C - Letter |