740B - Alyona and flowers - CodeForces Solution


constructive algorithms *1200

Please click on ads to support us..

Python Code:

n, m = map(int, input().split())
arr = list(map(int, input().split()))
score = 0

ps = [arr[0]]
for i in range(1, n):
	s = ps[i-1] + arr[i]
	ps.append(s)

for i in range(m):
	l, r = map(int, input().split())
	
	if (l == 1):
		total = ps[r-1]
	else:
		total = ps[r-1] - ps[l-2]
		
	score = max(score, total+score)

print(score)

C++ Code:

#include <bits/stdc++.h>
using namespace std;

void solve()
{
    int n, m;
    cin >> n >> m;
    vector <int> v(n+1);
    for(int i = 1; i<=n; i++)
    {
        cin >> v[i];
    }
    vector<int> cnt(n+1);
    for(int i = 1; i<=m; i++)
    {
        int a, b;
        cin >> a >> b;
        int sum = 0;
        for(int j = a; j<=b; j++)
        {
            sum = sum + v[j];
        }
        if(sum>0)
        {
            for(int x = a; x<=b; x++)
                cnt[x]++;
        }

    }
    int ans = 0;
    for(int i = 1; i<=n; i++)
    {
        ans = ans + v[i]*cnt[i];
    }
    cout << ans << endl;
}

int main()
{
    solve();
    return 0;
}


Comments

Submit
0 Comments
More Questions

969. Pancake Sorting
967. Numbers With Same Consecutive Differences
957. Prison Cells After N Days
946. Validate Stack Sequences
921. Minimum Add to Make Parentheses Valid
881. Boats to Save People
497. Random Point in Non-overlapping Rectangles
528. Random Pick with Weight
470. Implement Rand10() Using Rand7()
866. Prime Palindrome
1516A - Tit for Tat
622. Design Circular Queue
814. Binary Tree Pruning
791. Custom Sort String
787. Cheapest Flights Within K Stops
779. K-th Symbol in Grammar
701. Insert into a Binary Search Tree
429. N-ary Tree Level Order Traversal
739. Daily Temperatures
647. Palindromic Substrings
583. Delete Operation for Two Strings
518. Coin Change 2
516. Longest Palindromic Subsequence
468. Validate IP Address
450. Delete Node in a BST
445. Add Two Numbers II
442. Find All Duplicates in an Array
437. Path Sum III
436. Find Right Interval
435. Non-overlapping Intervals