n, k = map(int, input().split())
ans = 0
for i in range(k+1):
if (i==1):
ans += 1
elif (i==2):
ans += (n*(n-1))/2
elif (i==3):
ans += 2*(n*(n-1)*(n-2))/6
elif (i==4):
ans += 9*(n*(n-1)*(n-2)*(n-3))/24
print(int(ans))
#include <bits/stdc++.h>
using namespace std;
#define int long long
int ans = 0;
int nCr(int n, int r)
{
int val = 1;
for (int i = n; i >= n - r + 1; i--)
{
val *= i;
}
for (int i = 2; i <= r; i++)
{
val /= i;
}
return val;
}
void solve(int tc = 0)
{
int n, k;
cin >> n >> k;
int cnt = 0;
// The calculation of the derangement value of “N” is as follows
// DN= N![1-1/1!+1/2!-1/3!…1/N!],
// n = 2 Dn = 1
// n = 3 Dn = 2
// n = 4 Dn = 9
if (k >= 2)
{
cnt += nCr(n, 2);
}
if (k >= 3)
{
// after selecting 3 elements
// none of the 3 elements should be at their
// correct position
// let the elements be 4 5 6
// so we can place 4 at
// _ 4 _ which will become 6 4 5 or
// _ _ 4 which will become 5 6 4
cnt += 2 * nCr(n, 3);
}
if (k >= 4)
{
// to place the first element we have 3 options
// now suppose we have placed the first element
// at the incorrect position...now that leaves
// us with one incorrect position (since first element
// position is empty) and 2 correct positions
// so we have 3 elements out of which we can place anyone
// on the position of the first element and..and there is
// only one way to arrange the other two...since both positions
// are correct so we have total 3*3*1 = 9 ways
cnt += 9 * nCr(n, 4);
}
cout << 1 + cnt << '\n';
}
int32_t main()
{
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int tc = 1;
// cin >> tc;
for (int i = 1; i <= tc; i++)
{
// cout << "Case #" << i << ": ";
solve();
}
return 0;
}
53A - Autocomplete | 1729G - Cut Substrings |
805B - 3-palindrome | 805C - Find Amir |
676C - Vasya and String | 1042B - Vitamins |
1729F - Kirei and the Linear Function | 25D - Roads not only in Berland |
1694A - Creep | 659F - Polycarp and Hay |
1040A - Palindrome Dance | 372A - Counting Kangaroos is Fun |
1396B - Stoned Game | 16A - Flag |
1056A - Determine Line | 670B - Game of Robots |
1418C - Mortal Kombat Tower | 1382B - Sequential Nim |
1272C - Yet Another Broken Keyboard | 808A - Lucky Year |
1245A - Good ol' Numbers Coloring | 58B - Coins |
1041C - Coffee Break | 507A - Amr and Music |
1041D - Glider | 1486A - Shifting Stacks |
1389B - Array Walk | 71B - Progress Bar |
701A - Cards | 545A - Toy Cars |