python math.factorial algorithm

40

bigint Factorial(int n)
  {
      bigint p = 1, r = 1;
      loop(n, p, r);
      return r << nminussumofbits(n);
  }

  loop(int n, reference bigint p, reference bigint r)
  {
      if (n <= 2) return;
      loop(n / 2, p, r);
      p = p * partProduct(n / 2 + 1 + ((n / 2) & 1), n - 1 + (n & 1));
      r = r * p;
  }

  bigint partProduct(int n, int m)
  {
      if (m <= (n + 1)) return (bigint) n;
      if (m == (n + 2)) return (bigint) n * m; 
      int k =  (n + m) / 2;
      if ((k & 1) != 1) k = k - 1;
      return partProduct(n, k) * partProduct(k + 2, m);
  }

  int nminussumofbits(int v)
  {
      long w = (long)v;
      w -= (0xaaaaaaaa & w) >> 1;
      w = (w & 0x33333333) + ((w >> 2) & 0x33333333);
      w = w + (w >> 4) & 0x0f0f0f0f;
      w += w >> 8;
      w += w >> 16;
      return v - (int)(w & 0xff);
  }
# A pure Python version.

# Returns the number of bits necessary to represent an integer in binary, 
# excluding the sign and leading zeros.
# Needed only for Python version < 3.0; otherwise use n.bit_length().
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6

def num_of_set_bits(i) :
    # assert 0 <= i < 0x100000000
    i = i - ((i >> 1) & 0x55555555)
    i = (i & 0x33333333) + ((i >> 2) & 0x33333333)
    return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24

def rec_product(start, stop):
   """Product of integers in range(start, stop, 2), computed recursively.
      start and stop should both be odd, with start <= stop.
   """
   numfactors = (stop - start) >> 1
   if numfactors == 2 : return start * (start + 2)
   if numfactors > 1 :
       mid = (start + numfactors) | 1
       return rec_product(start, mid) * rec_product(mid, stop)
   if numfactors == 1 : return start
   return 1
 
def binsplit_factorial(n):
   """Factorial of nonnegative integer n, via binary split.
   """
   inner = outer = 1
   for i in range(n.bit_length(), -1, -1):
       inner *= rec_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
       outer *= inner
   return outer << (n - num_of_set_bits(n))
 
# Test (from math import factorial).
[[n, binsplit_factorial(n) - factorial(n)] for n in range(99)]

Comments

Submit
0 Comments